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Abstract. Faulty physician decision making has been blamed for everything from medical errors to
excessive procedure use and wasteful spending. Yet medical treatment is often complex, requiring
a sequence of decisions that may involve trade offs between selecting the choice with the highest
expected value or selecting a choice with higher possible payoffs. We show that the best choice
depends on a physician’s diagnostic skill so that the optimal treatment can vary even for identical
patients. Bringing the model to patient claims data for depression, we show that doctors who
experiment more with drug choice achieve better patient outcomes, except when physician decisions
violate professional guidelines for drug choice.

1. Introduction

In 2000, the National Academy of Medicine published a report entitled “To Err is Human,”
highlighting the importance of medical errors which, according to the report, kill 98,000 U.S.
patients annually. In addition, commentators such as Fuchs (2004) have blamed “the idiosyncratic
beliefs of physicians [and] the parochial character of much clinical practice,” that is, poor physician
decision making, for much wasteful spending. For example, Finkelstein et al. (2015) report that
health care expenditures on the average elderly person in Miami, FL were $14,423 in 2010, adjusted
for age, sex, and race, compared to $7,819 for the average elderly person in Minneapolis, MN. Other
researchers have found that these large differences in spending and utilization of care are largely
unrelated to health outcomes (Fisher et al. (2003)).

This paper examines variations in physician decision making in the context of the prescribing of
anti-depressant medications in the U.S. Anti-depressants are one of the largest and fastest growing
classes of drugs. In the U.S., the fraction of the adult population that have taken an anti-depressant
in the past 30 days has doubled from 6.8% to 13% between 1999/2000 and 2011/12 (Kantor et al.
(2015)).1 Depression has been blamed for rising suicide rates in the U.S., with suicide ranking as the
10th leading cause of death in 2016 (https://www.nimh.nih.gov/health/statistics/suicide.shtml). In
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addition to its overall importance, several features of the anti-depressant market make it an espe-
cially interesting context for studying physician decision making as reflected in physician practice
style. First, prices are likely to be relatively unimportant in decision making about anti-depressants
today since most anti-depressants are now available as generics and many patients face the same cost
(a small co-pay) for many drug choices. Hence, anti-depressants belong to the large and interesting
category of markets that clear largely without the aid of price signals (Roth (2018)). Second, as
Frank and McGuire (2000) observe, the assessment of patient condition is often much more difficult
in the case of mental illness than for many physical illnesses, suggesting that physician diagnostic
skill plays an important role.2

Third, there are many anti-depressants available (32 separate molecules over our study time
period), and since every patient responds differently, and there is no one drug that dominates
all others, finding an optimal treatment will necessarily involve experimentation with different
drugs over time. This classic multi-armed bandit problem, introduced in economics by Rothschild
(1974), implies a trade off between choosing the treatment with the highest expected value at a
point in time, and experimenting to learn more about treatments that may be better for a particular
individual. Since the physician cannot perfectly predict which drug is best for a patient, effectiveness
cannot be known until a patient starts taking a drug.3 The multi-armed bandit problem is about
finding the best rule for choosing the sequence of drugs to prescribe as a function of the observed
effects of past treatment. One important feature of the problem is that the effects of a drug may
be correlated with other drugs. Thus we have what is known as a correlated armed problem for
which there is no known closed form solution.4

The goal of this paper is to better understand the sources of variation in physician practice
style in such a market, and how these variations contribute to the performance of the health
care system. To do so, we develop a tractible Bayesian model using the upper confidence bound
(UCB) algorithm from the machine learning literature to explore the relationship between short
run exploitation of current knowledge (what Brezzi and Lai (2002) call Bayesian myopic behavior)
and experimentation to learn more.5 Reverdy et al. (2014) show that this algorithm does a good
2See for example the guidelines which are quite vague regarding best practices. The main tool used in a psychiatrist’s
office is the patient interview. In contrast, a person seeing a physician with a physical ailment often has a battery
of diagnostic tools available, including comprehensive blood tests, x-rays, MRI scans, heart monitors, fetal monitors
and so on. In future, genetic testing may be used to choose treatments for depression, but such screening is still in
the experimental stage (See Hicks et al. (2015)).
3The multi-armed bandit can be viewed as choosing an arm to pull at a slot machine. One does not learn the
consequence of a choice until the armed is pulled. Then one decides whether to continue pulling the arm or to switch
to a different arm. In our context, the patient corresponds to a slot-machine and the arm is a drug choice.
4See Gittins et al. (2011) and Cappé et al. (2013) for a discussion of the limitations of the single index approach.
There are some results for extreme cases, such as Klein and Rady (2011). See Bergemann and Valimaki (2006) for a
review of the earlier literature and Kendrick et al. (2014) for a recent review of the use of dynamic programming in
economics, and the so called curse of dimensionality.
5The machine learning literature has developed a class of easy to implement heuristic algorithms known as upper
confidence limit (UCL) or upper confidence bound (UCB) algorithms. There is a growing literature using such quasi-
Bayesian approaches to model observed human behavior for bandit type problems, including Acuna and Schrater
(2010), Mathys et al. (2011), Lee et al. (2011), and Reverdy et al. (2014). The literature on the UCB algorithm
begins with Lai and Robbins (1985) who provide bounds on the speed of convergence to the long run optimal
solution. Recent extensions include Auer et al. (2002), Brezzi and Lai (2002), Abernethy et al. (2007) , Cappé et al.
(2013) and Srinivas et al. (2012).
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job of modeling observed human choice in laboratory settings. It is computationally much less
complex than the Gittins index, yet there are a number of important results, beginning with Lai
and Robbins (1985), which imply that the algorithm converges to the optimal solution at the rate
O
(

1
log(T )

)
.6 The algorithm also allows for correlations in treatment effects.

We are able to model the physician’s taste for experimentation (or degree of satisficing, see Simon
(1955)) using a single parameter τ , known in the UCB literature as the tuning parameter. When
the tuning parameter is zero, (τ = 0), the physician chooses the option with the highest expected
value. When the tuning parameter is positive (τ > 0), the payoff from each choice is given by
the expected value of treatment plus τ times a term that increases with the variance of treatment.
The decision maker may select options that have high variance rather than the highest expected
mean payoff. After a decision is made, the physician observes the outcome, and updates her beliefs.
When the tuning parameter is large, then the physician experiments with more drug possibilities.
Hence, the model can integrate the different physician practice styles discussed in, for example,
Frank and Zeckhauser (2007), into a single framework.

A novel feature of our model is that the trade-off between current and future returns to experi-
mentation depends not only on physician tastes, beliefs, and the time horizon with the patient (or
alternatively, a discount factor), but also on physician diagnostic skill. If a physician is not able to
correctly assess a patient’s condition then the patient may be better off without experimentation.
However, if a physician is highly skilled in the sense of being able to correctly assess a patient’s
condition, i.e. has excellent diagnostic skill, then the gains from learning are larger. One insight of
the model is that there will not necessarily be a single correct treatment even for identical patients
since the best treatment will also depend on the doctor’s characteristics. Other things being equal,
a skilled diagnostician should be more experimental than a less skilled diagnostician.

The model is used to illustrate how patient health is likely to vary with physician diagnostic
skill and taste for experimentation, and how the two features interact. These results are then used
to motivate the use of an entropy score to access the importance of physician practice style for
patient outcomes in our data. The model makes predictions regarding the relationship between a
physician’s practice style and observed variability in prescribing behavior: Physicians who are more
experimental use a wider variety of drugs for their patients, and physicians with better diagnostic
skills stand to learn more from experimentation and so will be more experimental. Experimentation
may make it more likely that the physician finds the optimal treatment, but it may also make it more
likely that the physician violates prescribing guidelines, with potentially negative consequences for
patients.

Explorations of the relationship between physician practice style, guidelines, and patient out-
comes are carried out using novel data formed by merging information on all anti-depressant pre-
scriptions for each doctor to newly available national patient claims data on hundreds of thousands
of patients treated with anti-depressants from Blue Cross/Blue Shield (BCBS). The prescription
data is from IQVIA (formerly known as QuintilesIMS) and comes from their Xponent data base.

6In particular this implies that the solution maximizes average payoff in the long run, limT→∞U (T ) /T , where U(T )
is the total, undiscounted return until time T .
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One advantage of these data is that we can examine emergency room (ER) visits and hospital-
izations as outcomes, rather than relying on the suicides as the outcome measure. Suicides are
thankfully comparatively rare, making it difficult to compare doctors in terms of this patient out-
come.

We show that doctors differ greatly in their propensity to experiment with different anti-depressant
drugs. We proxy skill using the specialty of the prescribing physician (since in the U.S. most anti-
depressants are prescribed by specialties other than psychiatry) and find that as predicted, higher
skilled providers are more experimental. We are able to follow a patient through a treatment
episode, and find that seeing a more experimental provider improves a patient’s outcomes mea-
sured using total costs, non-drug costs, emergency room visits and hospitalizations. However, our
results also suggest limits on the value of experimentation in that patients whose doctors violate
prescribing guidelines have worse outcomes. This implies that the optimal management of provider
care should consist of a combination of constraints upon some choices, while allowing or even pro-
moting discretion over a set of treatments whose potential benefits are patient specific. Moreover,
choice constraints should be relaxed for specialists relative to general practitioners.

The rest of this paper is laid out as follows: Section 2 provides some necessary background
information. Section 3 lays out our model and theoretical results. The data is introduced in
Section 4, and the empirical results appear in Section 5. Section 6 concludes.

2. Background: Previous Work on Physician Decision Making and Practice Style

We focus on physician diagnostic skill, tastes, and beliefs and how they impact physician decision
making. Most previous work on prescribing focuses on other aspects of the problem. Dickstein
(2015) asks how drug choices are affected by differences in copayments across insurance plans.
Over his time period (2003-2005), branded drugs were a larger share of the anti-depressant market
and the insurer’s price paid varied from $8.00-$110.00 per month. However, copays only varied
from ~$10.00 to ~$20.00 per month, and drugs with a wide range of prices had similar copays,
suggesting that price differences could only be part of the explanation for why one drug was selected
over another. His data is not well suited to examine differences in physician practice style, since
even if physicians were identified, there would only be a few patients observed per physician.

Differences in patient health or patient tastes are an obvious potential demand-side driver of
differences in medical decision making. Crawford and Shum (2005) and Dickstein (2015) study
prescribing decisions in models in which there are no differences in physician practice style. As
Crawford and Shum (2005) (page 1147) state: “. . . all doctors in our model have the same prob-
ability of prescribing a given drug to a patient with a given diagnosis in a given time period”
implying that all differences in treatment must be driven by patient needs or preferences.

However, there is increasing evidence that supply-side variation is important. In an innovative
study using vignettes from patient and physician surveys, Cutler et al. (2013) assess the hypothesis
that regional variations in procedure use are driven by differences in patient demand across areas.
Like Fuchs (2004), they conclude that patient demand is a relatively unimportant determinant of
regional variations and that the main driver is physician beliefs about appropriate treatment that
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are often unsupported by clinical evidence. Similarly, previous studies have found little evidence
that patient demand is driving the large differences in C-section rates across U.S. providers (Mc-
Court et al. (2007)). Finkelstein et al. (2015) address the same question using longitudinal Medicare
claims data that allow them to track patients as they move through different healthcare markets.
They suggest that about half of the observed variation in procedure use among these elderly movers
is due to supply-side factors, while half is due to patient-level, or demand-side factors.7

Fear of litigation is another frequently cited reason for variations in physician decision making.
The idea that physician decisions are shaped primarily by fear of litigation is popular, but has
been repeatedly de-bunked. If fear of litigation were a primary driver, then one might expect legal
reforms that limit liability to have major effects on practice. However, Baicker and Chandra (2005)
find no evidence that treatment responds to changes in such liability, except for some screening
procedures.

Currie and MacLeod (2017) and Currie et al. (2016) develop a framework for studying individual
doctor decision making in contexts with zero/one choices. Their framework allows for two dimen-
sions of physician practice style: Relative to a reference physician, doctors can be more or less
aggressive on average, and they can also be more or less responsive to a patient’s medical needs.
They show that there is a great deal of variation in both responsiveness and aggressiveness across
doctors, and that these characteristics of doctors are fairly stable over time. The model developed
below builds on these ideas in a context with multiple possible treatments, and highlights the taste
for experimentation and diagnostic skill as key dimensions in which doctors differ.

Previous research on prescribing practices (e.g. Berndt et al. (2015); Frank and Zeckhauser
(2007)) focuses on concentration in prescribing as a measure of practice style and suggests that
most physicians have a favorite drug or a small number of favorites which they prescribe to most
patients with a given condition. Differences in prescribing practices have led some observers to
call for stronger practice guidelines, especially in psychiatry. Meehl (1954), Grove et al. (2000)
and Kahneman and Klein (2009) argue that in general an algorithm could do as least as well as a
psychiatrist in the treatment of mental illness. 8 On the other hand, Frank and Zeckhauser (2007)
argue that “excess clustering of physician behavior may be reinforced by the proliferation of practice
guidelines accompanied by increased public reporting on performance relative to recommended care
patterns.” That is, they express concern that guidelines could prevent doctors from providing care

7An alternative explanation for sub-optimal treatment decisions is spillovers between doctors. Chandra and Staiger
(2007) study the choice of surgery versus medical management of cardiac patients. Physicians in areas that specialize
in surgery are assumed to become better at surgery and worse at medical management and vice-versa. These spillover
models have two important empirical implications which are that one should see more uniformity within areas than
across areas, and that doctors should converge to a regional practice style over time. However, neither Epstein and
Nicholson (2009) nor Dranove et al. (2011) find convergence in practice styles among physicians in the same hospitals
over time. Similarly, Chan (2015) finds that the practice styles of attending physicians have little impact on those
junior to them in the same hospital. On the other hand, Molitor (2016) studies cardiologists who move and finds
rapid convergence to the practice style of the destination area within one year. It is conceivable that physicians
choose to move to places with a more congenial practice style rather than the practice style in the destination place
having an immediate effect on their own style. As Cuddy et al. (2018) show, we find little evidence of area-level
spillovers in treatments for depression.
8There is ongoing research looking the question of the optimal sequence of treatments following an algorithm (see
Adli et al. (2017)).
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that is sufficiently individualized. More generally, management practices have been shown to be
strongly related to outcomes in health care settings, and the question of how best to structure
guidelines for physicians is an important one (see Bloom et al. (2015), Tsai et al. (2015) and
McConnell et al. (2013)). We measure concentration using an entropy score, and show that it
increases with the doctor’s taste for experimentation, and falls when doctors follow guidelines.
An important contribution is to relate concentration in prescribing and adherence to guidelines to
patient outcomes in a setting that allows us to control for differences between patients.

3. Conceptual Framework for Understanding and Measuring Variation in
Physician Practice Style

Much previous work, as discussed in Frank and Zeckhauser (2007), views physicians as having
practice styles that range from norm-based to hyper-rational Bayesian. Our goal is to provide
a single theoretical framework that can capture this variation, and link variation in physician
behavior to patient outcomes. This section is divided into three parts. In the first, we discuss the
experimentation-exploitation trade-off faced by physicians. After working through a simple two-
drug, two-period problem that has a closed form solution and offers some useful insights, we turn
to the multi-drug, multi-period problem and discuss the properties of the upper confidence bound
algorithm. We show that the UCB algorithm allows one to parameterized the experimentation-
exploitation trade-off with a single parameter and we provide conditions under which the optimal
decision is achieved. Reverdy et al. (2014) use the UCB algorithm to model the behavior of human
subjects playing a multi-armed bandit problem with correlated arms and find that a great deal of
heterogeneity in individual behavior can be captured by variations in the tuning parameter.

The second section introduces the (normalized) entropy score. In each period we can measure the
fraction of patients for whom a physician prescribes a particular molecule. This yields a probability
vector in the 32 dimensional simplex, ∆32 =

{
p|
∑32
i=1 pi = 1

}
. Following Theil (1980), we use the

Shannon entropy score to measure the diversity in decision making.
Finally, in the third part we connect the learning model with the entropy score. We use data

from medical trials to provide a rough parameterization of beliefs about the drug effects. We
then illustrate how variation in the taste for experimentation and in physician diagnostic skill are
reflected in physician practice style and how they affect patient payoffs over time.

3.1. Learning.

The Experimentation-Exploitation Trade-off. Physicians know that every patient is different, and
that what works for one may not work for another. At the same time, physicians have data from
clinical drug trials that can be used to determine which drug has the highest expected payoff for
an average patient. Hence, physicians face a trade off between picking the drug that is best for the
average patient (unless it has been proven not to work for that patient), and experimenting with
different drugs in an attempt to find the one that works best for a particular patient.

This trade-off can be illustrated concretely with a simple two-drug, two-time period example.
Suppose a physician is choosing between two drugs, A and B with independent effects over two
periods, t ∈ {0, 1}.
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In period 0 the physician observes a measure of the patient’s condition, denoted by y0, the log
of a numerical measure.9 This measure is normalized so that y0 < 0 indicates that a person is
depressed and would benefit from treatment. The doctor chooses a drug d0 ∈ {A,B}, that has a
true unobserved effect, ed0 ∈ <.

Period 1 : The patient returns to the physician after taking the drug, and the physician observes
the patient’s condition:

y1 = ed0 + ε1,

where ε1 ∼ N
(
0, σ2 = 1

ρ

)
is a noise term that represents the ability of the physician to correctly

diagnose the patient. In other words, the physician observes the true condition plus some noise.
We can think of the precision ρ as a physician-specific variable that is larger for better physicians.

The physician has some prior beliefs about drug effectiveness. Suppose the physician believes
that the effectiveness of each drug is normally distributed and uncorrelated with the effectiveness
of the other drug:

ed ∼ N
(
µd, σ

2
d = 1

ρd

)
,

where ρd is the precision of the physician’s beliefs about the effect of drug d on a person randomly
draw from the potential patient pool. Hence, ρd reflects the physician’s uncertainty about the
likely effectiveness of the drug for a particular individual. The physician can use the signal y1 to
update her beliefs. The assumption that drug effects are believed to be uncorrelated implies that
the physician can update her beliefs for drug d0, but not for the other drug, d 6= d0. Suppose that
d0 = A. Then, after observing y1, Bayesian updating implies:

µA (y1) ≡ E {eA|y1} = ρy1 + ρAµA
ρ+ ρA

,(1)

ρA (y1) = 1
var {eA|y1}

= 1
ρ+ ρA

.(2)

If drug B is prescribed in period 0, then we have the analogous expressions for the updated beliefs
for drug B, µB (y1) and ρB (y1).

Given the data {d0, y1}, in period 1, the physician makes a choice d1 ∈ {A,B}, that in turn
results in an outcome:

y2 = ed1 + ε2,

where it is again assumed that ε2 ∼ N
(
0, σ2 = 1

ρ

)
. We can denote the physician’s choice function

in period 1 by δ1 (y1, d0)∈{A,B}, and hence a physician’s overall decision rule in period 0 is defined
by:

δ0 = {d0, δ1 (y1, d0)} .

In period 0 a physician might place different weights on each period of treatment. Suppose that
physician preferences are given by:

U (δ, ζ) = E {(1− ζ) y1 + ζy2|δ} ,
9In the simulations below we measure the patient’s condition using h, the Hamilton 17 score, an outcome measure
that is commonly used in clinical trials of anti-depressants. A score of h > 7 means that the person is depressed, so
we define outcomes to be y = log (7) − log (h) so that persons with y > 0 are not depressed. See Hieronymus et al.
(2015) for a recent discussion of using clinical trials to measure the effectiveness of anti-depressant drugs.
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where ζ ≥ 0 is the weight given to the future well being of the patient. This formulation of the
utility function implies that the physician is altruistic and only cares about the well being of the
patient. However, physicians can differ in terms of the weights they place on the present vs. the
future outcomes of the patient. If ζ = 0, then in period 0 the physician will chooses the drug that
maximizes E {y1|d0} = µd0 . Let us label the drugs so that µA > µB, and hence when ζ = 0 the
physician always chooses A.

When ζ = 1, the choice in period 0 depends on the value of information from that choice. If
drug A is chosen in period 0, then the physician updates her beliefs regarding the effectiveness of
drug A. If E

{
eA|y1, d0 = A

}
< µB then she will switch to drug B in period 1. However, if the

variance of the effectiveness of drug B is higher than the variance in the effectiveness of drug A,
then it is possible that choosing drug B in period 0 will have a larger impact on the expected effect
of treatment in period 1.

The value of information can be computed as follows.10 First, compute the value of choosing
drug A in period 0 and then using this information to decide on treatment in period 1. The value
of information is computed relative to no information. When the physician has no information (NI)
from period 0, then her utility in period 1 is:

UNI1 = max {E {y2|d1 = A} , E {y2|d1 = B}} = max {µA, µB} = µA.

If she chooses to treat with drug A in period 0, she then observes the outcome y1 = eA + ε1. Then,
using (1) the physician chooses:

δ1 (y1, A) = argmaxA,B {µA (y1) , µB} .

The computation can be completed by taking the expected value of the outcome in period 0. Notice
that:

(3) y1 = µA + ξA1 + ε1,

where ξA1 is a mean zero, precision ρA, normal random variable representing the physician’s
uncertainty about the effect of drug A in period 0. The payoff from choosing treatment δA0 =
{A, δ1 (y1, A)} is:

U
(
δA0 , ζ = 1

)
= E {max {µA (y1) , µB}} .

The value of information from choosing A in period 0 is given by:

VA = U
(
δA0 , ζ = 1

)
− µA ≥ 0.

Before observing y1, the expected value of y2 given d1 = A is µA, and hence the ability to observe y1

after choosing d0 = A provides the option to choose d1 = B if one learns that it is likely to be better.
Hence VA ≥ µA. Similarly, the value of information from choosing strategy δB0 = {B, δ1 (y1, A)} is
given by:

VB = U
(
δB0 , ζ = 1

)
− µA ≥ 0.

10See Raiffa and Schlaifer (2000) for a discussion of the value of information, particularly section 5.10. They do not
have the explicit formula provided here - the derivation is in the appendix.
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When d0 = B, the physician can always get µA from choosing A in period two, hence learning
about B can only increase her future payoffs.

For this two-period case one can explicitly compute the value of information (proofs are in the
appendix):

Proposition 1. The value of information from choosing drug d ∈ {A,B} is:

Vd = σdL

(
µA − µB

σd

)
,

where σ2
d = ρ

ρd(ρd+ρ) , and, for x ≥ 0,L (x) is the unit-normal linear loss function defined by:

L (x) = E {max {x, γ}} − x = (1− F (x)) (φ (x)− x) ,

γ ∼ N (0, 1), F (x) is the cumulative distribution function for the Normal distribution, and φ (x) =
E {γ|γ ≥ x} is the expected value of a lower truncated Normal distribution. For x < 0 we have
L (x) = L (−x) = E {max {x, γ}}.

This result provides an exact computation of the value of information in this two drug example.
The function L (x) has a maximum value at L (0) which decreases to zero for large positive values
of x. Thus we have the following corollary:

Corollary 1. Experimenting with drug B has more value than giving drug A if and only if the
precision of the prior for drug B, ρB, is lower than the precision associated with drug A, ρA.
The value of experimentation also falls with the difference in the expected effects of the two drugs
(|µA − µB|).

The uncertainty term, σ2
d = ρ

ρd(ρd+ρ) , depends upon both the precision of the signal y1 and the
prior precision of the physician’s beliefs, ρd. If ρA > ρB then a physician who cares only about long
term outcomes will choose drug B in period 0 because the gain in information is greatest in that
case, regardless of the value of the mean effect. Let us now consider decisions when the value of
ζ ∈ [0, 1]. The payoffs to the physician from choosing drugs A or B in period 0 are then given by:

U (A, ζ) = (1− ζ)µA + ζ (µA + VA) ,(4)

U (B, ζ) = (1− ζ)µB + ζ (µA + VB) .(5)

Taking the difference between these two expressions shows that the physician chooses treatment A
over B if and only if:

(1− ζ) (µA − µB) + ζ (VA − VB) ≥ 0,(6)

ζ∗ (µA, ρA, µB, ρB, ρ) ≡ 1
1 +

(
VB−VA
µA−µB

) ≥ ζ.(7)

Thus, physicians who put a weight ζ > ζ∗ (µA, ρA, µB, ρB, ρ) will choose treatment B in period 1.
The function ζ∗ is decreasing in

(
VB−VA
µA−µB

)
. Hence taking the distribution of ζ as given, physicians

are more likely to experiment with B when there is more uncertainty about the likely effect of B,
or when the expected value of B, µB, is closer to the expected value of A.
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As discussed above, physician diagnostic skill is an important physician attribute which is here
parameterized by the precision of diagnosis, ρ. As the physician becomes less skilled (ρ→ 0), then
the value of information approaches zero for both drugs, and ζ∗ → 1. In other words, we should
expect to see less experimentation by lower ability physicians.

Choosing among many alternatives. The purpose of this section is to extend the analysis to the
multi-drug case. Suppose there are j ∈ J physicians and each physician has patients Ijt in period
t. Patient i ∈ Ijt is described by a state xit ∈X, but the physician can only observe zijt ∈ Z.
The physician’s task, given condition zijt, is to recommend a course of action. An action involves
choosing a drug d ∈ D =

{
d0, d1, ..., dm

}
, where m is the number of drugs, d0 means no drug, and

d1, ..., dm are one of the available drugs. Physician behavior can be represented as a mapping from
the observed patient condition to a drug treatment:

δjt : Z → D.

Since physicians may learn from experience, we allow their behavior to change over time, though
we assume that behavior is fixed within a time period. Even when the number of choices is small,
physician behavior is potentially complex.

For example, one patient attribute that is typically contained in zijt is the drug that the patient
was prescribed in the previous period (which might be “no drug”). With 32 drugs, then for each
drug history the physicians would have 32 possible choices, and hence the number of possible
physician behaviors is at least 3232!11 Our goal is to not only provide a tractable model of this
choice, but also to provide a low dimensional characterization of these decisions.

At date t, physician j observes yijt, the condition of patient i ∈ Ijt:

(8) yijt = eidt−1 + εijt,

where eid, d ∈ D is the effect of any drug that the patient is currently taking, and the error term
is distributed εijt ∼ N

(
0, σ2

j = 1
ρj

)
. Larger values of ρj correspond to physicians who can more

accurately assess patient condition. Different drugs are expected to have different effects on each
patient, and the task of the physician is to choose the drug that is most helpful for each individual.
A physician’s behavior will depend on their assessment of the patient’s condition and their beliefs
about the effectiveness of medication. The distribution of beliefs about drug effects at time t is
assumed to be given by:

eijt ∼ N (µijt,Σijt) ,

where physician beliefs are compactly represented by Bijt = (µijt,Σijt).12 Before the patient
arrives, a physician’s training and experience endows them with some initial beliefs denoted by

11This is just a bit less than the estimated number of atoms in the planet earth - around 1049.
12In particular, µijt0 = 0, the expected condition of a patient who has not been treated, Σijt [0, d] = Σijt [d, 0] =
σ2, d = d0, . . . , dm is the variance of the underlying condition of the patient. For a matrix A the expression A [k, l]
means the k′th row and the l′th column.
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Bj0. Note that this formulation allows for correlations in the expected effects between different
drugs.13

The initial beliefs, Bj0 play a key role because they determine the first drug that a physician
tries. In principle, these beliefs should be guided by the medical evidence on drug effectiveness.
There are many randomized control trials of anti-depressants (some results are discussed briefly in
the appendix). In what follows we will assume that all physicians have initial beliefs based on the
distribution of treatment effects from these clinical trials.

Treatment proceeds as follows. A patient specific effect ei is drawn before the first visit to a
physician and is given by:

ei ∼ N (µ0,Σ0) ,

where B0 = (µ0,Σ0) represents the true distribution of patient effects in the population of indi-
viduals who seek treatment with a physician. For the time being, we assume that the physician is
the sole decision maker, which may be realistic given limited patient information about the many
drugs available. In the empirical work, we will allow for fixed differences between patients, which
could include differences in patient tastes for medications. The physician decision maker believes
that the true distribution is Bj0, which may or may not be the same. The physician is assumed
to observe the drug taken in period t − 1, denoted dit−1. Patients can change physicians, so the
current physician may not have prescribed the current drug.

The state of a physician’s information is completely defined by:

zijt = {Bijt−1, yijt, dt−1} ,

namely the current beliefs regarding the effect of treatment for patient i, Bijt−1 , the observed
condition of the patient, yijt, and the current drug regime dit−1. The physician uses the data yijt
to update her beliefs using Bayes rule. The formula is in the appendix. Here we write:

Bijt = Π (zijt) .

Once beliefs have been updated, then by definition:

E {yijt+1|zijt} = µijt [dijt] ,

where µijt [dijt] is the expected value of drug d following the update.

13Dickstein (2014) explicitly allows for such correlation in his model by supposing that physicians follow a two step
procedure when selecting a drug - they first choose the drug class, and then choose a drug within the class. Since we
allow for general correlation between all drugs, his model is a special case.

11



We assume that the preferences of the physicians are given by the difference between the expected
consequence of treatment, and the best choice:14

0 ≥ Uij (T ) = E

{
T∑
t=1

yijt

}
− e∗iT,(9)

= E

{
T∑
t=1

eidt−1 − e∗i + εijt

}
,

= −E

∑
d∈D

nid (e∗i − eid)

 ,
= −E

 ∑
d∈D\d∗

nid (e∗i − eid)

 ,
where T is the period of treatment, and nid is the number of times the physician chooses strategy d.
The final expression E

{∑
d∈D\d∗ nid (e∗i − eid)

}
can be thought of as the negative of a physician’s

regret because it measures the distance between the optimal and the actual choice. In this setup the
best the physician can achieve is normalized to zero. The number of times the physician chooses
the wrong treatment is given by:

(10) 0 ≤ Nij(T ) = E

 ∑
d∈D\d∗

nid

 ≤ T.
This expression provides a formal link between preferences and the number of times the physician
chooses a sub-optimal treatment.

If the physician expects to see the patient only once, then she sets T = 1, and chooses the
treatment that has the highest expected effect. For example, ER doctors may be concerned about
finding the best immediate treatment. Other physicians may be involved with long-term treatment
of the patient and hence they may be more concerned with the average well being of the patient over
time. In that case, the expected duration of the doctor-patient relationship may be long enough
to justify experimentation with different treatments. We explore the impact of increasing the time
horizon on physician behavior and performance in the next section.

Bounds on the Optimal Treatment. This section provides some predictions about the way observed
behavior changes with characteristics of physicians. We first find an upper bound on patient
utility, and then a lower bound. Then, we use these two results to show that the UCB algorithm
will eventually achieve the optimum.

Our first result follows immediately from an important paper, Lai and Robbins (1985) who
provide a lower bound on the number of times the physician chooses treatment d under any strategy

14See Lai and Robbins (1985) who introduce the notion of minimizing regret as an objective. In economics, it is more
natural to think in terms of utility, and hence our analysis is in terms of maximizing the negative of regret, as given
by Uij (T ).
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that maximizes Uj (T ) in the long run:

(11) Nij (T ) ≥
{

2
(e∗i − eid) ρj

+O (1)
}
log (T ) ,

where O (1)→ 0 as T →∞.15 This expression shows that when there is uncertainty regarding the
effect of treatment, a physician pursuing the optimal treatment strategy necessarily makes errors.
The lower bound on the number of errors is smaller for physicians who have higher diagnostic skill
(ρj is larger), and when the gap between the optimal drug and other drugs is larger.

The lower bound on the average number of errors approaches zero as the number of time periods
increases:

limT→∞Nij (T ) /T ≥ limT→∞

{
2

(e∗i − eid)
2 ρj

+O (1)
}
log (T ) /T = 0.

For T <∞ this expression implies that in a diverse population of patients where physicians cannot
perfectly observed patient condition, there is necessarily variation in choice. This result implies
that there is an upper bound on physician payoffs that is increasing with physician skill:

Proposition 2. For any period T of treatment, the expected payoff of a physician following an
optimal treatment strategy satisfies:

Uij (T ) ≤ −log (T )
{

2 (m+ 1) 1
(e∗i − eid) ρj

+O (1)
}
,

where m+ 1 is the number of possible treatments (including prescribing no drug).
We know from expressions 4 and 5 that the payoff from the choice of a drug has two components

- the expected gain from treatment and the value of information. From Corollary 1 we know
that the value of information increases with the variance of the estimated gains from treatment.
The UCB algorithm builds on these two ideas and also assumes that the decision maker updates
beliefs using Bayes rule. The physician has beliefs regarding patient i in period t that are given by
Bijt = {µijt,Σijt} . Given a parameter τt ≥ 0 we construct a score for choice d:

(12) Q (d,Bijt, τt) = µijt [d] + τtΣijt [d, d]1/2 .

Since the effect of treatment, eijtd is normally distributed, we can relate Q to the probability of
a beneficial effect from treatment with drug d. Given physician beliefs B, the physician has the
following assessment regarding the likely effectiveness of treatment d:

(13) Pr [ed ≥ Q (d,B, τ)] = 1− F (τ) ,

where F is the normal cumulative distribution function.

Thus for each treatment, the score Q defines the point at which there is the same odds, 1−F (τ)
of the effect of treatment exceeding Q. For example, when τ = 0, then Q (d,Bijt, 0) = µijt [d], and
the odds of treatment d being better than Q (d,Bijt, 0) is 50%.

15The general condition is E
{
nT

id

}
≥
{

1
D(pid||pid∗ ) +O (1)

}
log (T ) , where D(pid||pid∗ ) is the Kullback-Leibler di-

vergence between the payoffs under d and d∗ for patient i. This expression has a nice closed form for normally
distributed errors. See Reverdy et al. (2014)
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The UCB Algorithm Applied to Drug Choice. The goal of the UCB algorithm is to find the best
long term choice as quickly as possible. The algorithm can be directly applied to the problem of
drug choice as follows. Let Bij0 be the initial beliefs of physician j treating patient i at time t = 0
and let additional data about the patient be zij0. Decision making at time t proceeds as follows:

(1) Update beliefs using Bayes rule: Bijt = Π (zijt).
(2) Given the tuning parameter τt ≥ 0, for each drug d ∈ D compute the upper confidence

limit :
Q (d, zijt) = µijt [d] + τijtΣijt [d, d] .

(3) Set treatment:
δUCB (zijt) = argmaxd∈DQ (d, zijt) .

Next, set the tuning parameter to increase over time:

τt = F−1
(

1− 1
Kt

)
,

which ensures that:
Pr [ed ≥ Q (d,B, τ)] = 1

Kt
.

In other words as t grows, the probability that the effect is greater than the upper credible bound
goes to zero. The physician can be said to have an uninformative prior if the variance of prior
beliefs is infinite. Let UUCB (T ) denote the payoff when the physician follows the UCB algorithm
and has initial beliefs with precision zero (found by computing behavior with positive precision
and then taking the limit to zero). In this case we have the following result (the proof is in the
appendix):

Proposition 3. Suppose that the effects of the drugs are uncorrelated and K ≥
√

2πe , then with
an uninformative prior:

0 ≥ UUCBij (T ) ≥ −
∑
d∈D

γ1 (K,T )
(e∗i − eid) ρj

+ (e∗i − eid) γ2 (K,T ) ,

where limT→∞
γ1(K,T )
log(T ) = 2 and limT→∞

γ2(K,T )
log(T ) = 2

K .

This proposition provides a lower bound on the UCB algorithm. Notice that an increase in
physician skill (ρj is bigger) results in a sharper lower bound. In other words we can expect higher
skilled physicians to learn more quickly. Combining the upper and lower bounds:

Proposition 4. Suppose that a physician has uninformative priors, then in the limit performance
under the UCB algorithm achieves the highest possible payoff:

limT→∞
1
T
UUCBij (T ) = 0.

This result follows immediately from Propositions (2) and (3) and implies that physicians who
follow the UCB algorithm eventually find the optimal treatment. But in order to find it they must
experiment, as shown by proposition (2).
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Behavioral Interpretation of the UCB Algorithm and Experimental Physicians. The properties of
the UCB algorithm are typically determined with specific assumptions on how to increase the tuning
parameter over time. This in turn results in organized search over the arms of the multi-armed
bandit in a way that leads to the long run optimal choice. As Reverdy et al. (2014) show, the UCB
algorithm can also be used as a model of human behavior where one can suppose that different
individuals have fixed tuning parameters, that in turn have well defined behavioral interpretations.

For example, a short-run physician can modeled by setting τ = 0. In that case, she chooses
the option that is best for the patient in the current period, though she continues to update her
beliefs as a function of the information she receives. This may be a reasonable way to characterize
physicians, such as obstetricians, who are treating patients with post partum depression that is
expected to be temporary.

Conversely, a chronically ill patients has a longer horizon, and hence may benefit from exploration
to find the optimal treatment. However, from Proposition (4) it must be the case that the posterior
precision for each choice is unbounded in the long run, which in turn implies that experimentation
never stops. In practice, patients have finite lives, and hence at some point experimentation should
stop. This can be modeled by setting the tuning parameter to a fixed τ > 0 that corresponds to
an experimental physician whose preferences are precisely defined as follows:

Proposition 5. Suppose physician j treats patients according to the UCB algorithm with a fixed
tuning parameter τ . Then as T → ∞, experimenting stops and choice settles upon some drug d∗ij
such that the probability that any other treatment d 6= d∗ij is better than d∗ij is less that 1− F (τ) :

(14) Pr
[
ed ≥ ed∗ji

|B∞ij
]
≤ 1− F (τ) ,

where B∞ij is the limit as T →∞ of Bijt.

Proof. Given that there are a finite number of choices, with probability one decision making settles
upon a single choice d∗ji, which in turn implies that physicians learn the true value of treatment ed∗ij

as T → ∞. Under the UCB algorithm, it must be the case that for d 6= d∗ij ed∗ij
≥ Q

(
d,B∞ij , τ

)
.

From (13) we have:

Pr
[
ed ≥ ed∗ji

|B∞ij
]
≤ Pr

[
ed ≥ Q

(
d,B∞ij , τ

)
|B∞ij

]
= (1− F (τ)) .

�

For example, consider a short-run optimizer, that is a physician who chooses the treatment that
maximizes the expected payoff each period. When experimentation ceases, the choice d∗ij will have
the feature that for any other choice, d, it must be the case that the expected return µij [d] ≤ ed∗ij

,
and hence the probability that better treatment exists is less than 50%.

An experimental physician is one who continues to experiment until the probability of success
is less than 1 − F (τ). This behavior is related to Simon (1955)’s notion of satisficing. Simon
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observes that search costs typically lead decision makers to continue to search until they reach
some aspiration level.16

The insight of the literature on the UCB algorithm is that systematic exploration aimed at
discovering the options that have the highest probability of success results in behavior that is close
to optimal in the long run. Proposition (3) shows that if τ increases at an appropriate rate over
time, then eventually the optimal choice is made. Proposition (5) shows that when the tuning
parameter is fixed at τ , the physician continues experimentation until the probability of success
fall below (1− F (τ)). The UCB algorithm captures the idea that a physician would experiment
with a new drug if and only if it has a chance of success that is at least as great as 1− F (τ).

This approach fits in well with the existing literature on physician behavior. For example, Frank
and Zeckhauser (2007), discuss three physician types:

1. Physicians who follow therapeutic norms. These doctors select treatments based upon a
category rather than customizing treatment for each individual. The broader the category, the
more patient-specific information is being disregarded in the treatment choice, so that one can
think of this process of categorization as reflecting physician diagnostic skill, captured by ρj in
our model. The main empirical implication is that physicians who use “crude” or less informative
categories learn at a slower rate, as shown in Proposition (3). Currie and MacLeod (2017) provide
direct evidence that physicians vary in the extent to which they respond to patient observables,
consistent with this hypothesis.

2. Physicians who follow “sensible-use” norms. Frank and Zeckhauser (2007) use the example
of chronic versus acute conditions suggesting that physicians find it sensible to use different norms
in these two cases. In our model, this distinction arises naturally because the time horizon affects
the return to experimentation. With an acute condition, the physician chooses the drug with the
highest expected value given current information, and hence is characterized by τ = 0. With a
chronic condition, there can be a benefit from experimenting to find the best treatment, and hence
have a τ > 0.

3. Physicians who “do it my way.” Some physicians regularly prescribe therapy that is quite
different from the choices made by other physicians. This observation is an immediately implication
of Bayesian learning in a large population of physicians. Given that outcomes are stochastic, in
a large population we can expect one or two physicians to have a number of positive experiences
with any particular treatment. Bayesian updating then leads the physician to have strong beliefs
about the efficacy of the treatment which can be slow to change. Alternatively, if beliefs are very
strong (the variance of the estimated effect of the drug is believed to be very precise) then rational
decision making can still lead to poor decisions for extended periods.17

3.2. Characterizing physician practice style. The model developed above emphasizes that
physicians can vary in a number of ways that will affect their decision making including their

16As Simon (1955) shows, the aspiration level corresponds to the reservation wage in a labor market search. The
point is that even when we cannot directly observe a person’s future labor market prospects, we can characterize
their behavior in terms of a reservation wage that determines the point at which further search stops.
17As Diaconis and Freedman (1986) show under appropriate conditions a Bayesian decision maker may hold incorrect
beliefs even in the long run with unlimited amounts of information.
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ability to diagnose the patient, differences in beliefs about the effectiveness of different drugs, the
doctor’s time horizon with the patient, and their preference to relieve suffering in the short term
vs. experimenting to find an optimum treatment. We cannot directly observe these physician
characteristics in observational data, so we seek to develop proxies for them.

As we will see below, most psychotropic drugs in the U.S. are prescribed by physicians other
than psychiatrists. General practioners are the most common prescribers, but specialities includ-
ing obstetrician-gynocologists, cardiologists, and rheumatologists also frequently prescribe anti-
depressants. Doctors who are not psychiatrists will usually have little training in the use of anti-
depressant medications, and see fewer depressed patients per capita. Thus, it seems reasonable to
assume that they will be less skilled diagnosticians on average, and therefore we use specialty as a
proxy for ρj .

As our model makes clear, the return to experimentation will depend on the value of the in-
formation to be gained. In a world where there was one drug that was clearly superior for all
patients, there would be little need to experiment, and prescribing would be expected to be highly
concentrated. In a world where each of the 32 drugs was best for some patient, there could be a
high return to gathering more information through experimentation.

The most popular measure of information is the Shannon entropy score, a measure Theil (1980)
advocated for in economics and which is also a natural measure of concentration in this context.18

We begin with a general definition of the information content in a practice style, and then discuss
two applications. Let p ∈ ∆n = {p ∈ [0, 1]n |

∑
i pi = 1} be a probability vector. Let n (p) denote

the number of entries in the vector. We define the scaled entropy score:

Definition 1. Given a vector p ∈ ∆n, then the scaled entropy score is given by:

Φ (p) = −
n∑
k=1

pklog(pk)/log (n)

=
∑
k∈D

pklog(1/pk)/log (n) ,

= φ (p) /log (n) ,

where
φ (p) =

n∑
k=1

pklog(1/pk)

is the Shannon entropy index.
In our empirical work the number of entries in the vector is held fixed for each set of regressions,

and hence we normalize by the number of outcomes in p. This ensures that our score is always
in [0, 1], with 0 corresponding to a single choice, while Φ (p) = 1 implies that pk = 1/n, where k

18Concentration of prescribing is a frequently examined aspect of practice style. Stern and Trajtenberg (1998) look at
antidepressants and calculate Herfindahl indices of the concentration of prescribing behavior. Frank and Zeckhauser
(2007) report that of 1,372 primary care physicians surveyed in 2004, the most prescribed medication for each of
9 different conditions was responsible for about 60% of a physicians’ prescriptions for that condition. In contrast,
patient demographics had little explanatory power. Berndt et al. (2015) use data on prescriptions of anti-psychotics
from IQVIA (formerly IMSQuintiles). They show that most physicians have a favorite drug and that on average 66%
of their prescriptions are for this drug.
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indexes drugs. Here k is taken to be the number of drugs that are ever available over the sample
period, and pk is the share of patients who are taking drug k at time t. The scaled measure has
values between zero and 1, and a unique maximum with pk = 1/k. There are k minima, each
corresponding to pk = 1. We divide the entropy score by log (n (p)) so that the score always lies
between 0 and 1. In every application the dimension, n (p), is held fixed, and hence our score is
always in terms of the fraction of the maximum value possible - this allows easier comparison across
cases.

In order to use the entropy score to describe practice style we begin by dividing time into periods.
In period t, let njt be the number of patients that a physician treats, and let ndjt be the number of
prescriptions of drug d ∈ D =

{
d1, . . . , dm

}
, where m is the number of drugs, in period t. Let

pdjt = ndjt
njt

,

be the fraction of patients of physician j who take drug d in period t. This m-dimensional vector
pjt ∈ [0, 1]m is a measure of the physician’s static practice style at time t.19 It can be summarized
using the normalized entropy score:

Φjt = Φ (pjt) .

In the case where there is a unique optimal drug, entropy should be low and decreasing over time as
physicians learn about the best drug and gravitate to it. Conversely, if matching patients to drugs
is important, then higher entropy should be associated with better outcomes. These relationships
will be illustrated below with a simulation using current evidence from randomized control trials
as the starting point for initial beliefs.

3.3. Effect of Learning on Practice Style. Although the BCBS data is very rich, as described
further below, it will not allow us to fully explore the implications of our model for patient welfare.
In particular, the observed treatment window is quite short and so we cannot take account of
what may be lengthy patient histories with depression. Hence, we conduct a simulation exercise
to illustrate the effects of physician skill, physician tastes for experimentation, and time horizons
with a patient on physician entropy scores and patient utility. Another advantage of simulations
is that we can fix the distribution of patients to be exactly the same for each physician and thus
abstract for now from the issue of heterogeneity between patients. Even though patients are ex ante
identical, the simulation results illustrate that whether a patient wants the physician to experiment
will depend on the diagnostic skill of the physician, so there there cannot be a unique, optimal
treatment protocol.

Our simulations consider a 2x3 experiment with 6 physician types. The physician is either a
short-run optimizer or an experimental type with a fixed tuning parameter, τ (or success probability
cutoff 1 = F (τ)). In addition, we consider 3 levels of diagnostic skill, ρj . The short run optimizers
are assumed to always give the treatment with the highest expected value in the current period.
These physicians still update and learn from experience, but see no value in experimentation, so

19Here we have left off the “no treatment” choice since in the prescriptions data we do not see appointments that do
not involve a prescription.

18



that τ = 0. The experimental types do value experimentation and for our simulations we set
τExp = 1(1 − (1/TmaxK)), where K =

√
2πe, the constant used in Proposition (3), and Tmax is

the maximum number of periods used in the simulation. In addition, we allow physicians to vary
in terms of diagnostic skill. Let ρj ∈ {10.0, 1.0, 0.1} , measure the accuracy with which the doctor
assesses the patient’s condition. Here ρj = 10 denotes high skill (H), and ρj = 0.1 denotes low skill
(L).

In our simulations we assume that physician priors are given by data about the mean and variance
of the effects of drugs from clinical trials.20 These data are described further in the Appendix and
the assumptions about drug efficacy that we use to model physician beliefs are briefly summarized
in Table 1. The table details the efficacy of each of the top 11 anti-depressant drugs (ranked in
terms of market share in 2014) in terms of the effect on the improvement in the Hamilton17 (HAM-
D) score.21 Clinical trials for anti-depressants typically select a population of depressed patients
and randomly assign them to treatment and control. The control group gets a placebo drug while
the treatment group get the drug under investigation. The level of depression before and after the
experiment is measured using the HAM-D score. It is worth highlighting that the placebo effect is
quite large. In the case of Sertraline (generic for Zoloft), the most popular drug, the placebo effect
is 80% of the total effect of treatment. The fact that the placebo effect is on average responsible
for more than 50% or a drug’s effect can help explain why it is hard to find the most effective
treatment.

The simulation considers a physician who has a constant load of 300 patients, all drawn from
the same k-dimensional normal distribution of “true” drug effects from the clinical trials. That is,
each patient will have a different optimal drug, but at first all patients will appear identical to the
physician. We simulate a doctor’s entropy score over time as well as her utility, which depends on
the number of deviations from optimal treatment. To summarize, beliefs are fixed by the clinical
data, so that the simulations explore the effects of doctor diagnostic skill, the doctor’s taste for
experimentation, and the treatment time horizon (T).

Figure (1) illustrates the evolution of mean practice style over time as a function of physician
characteristics. Consider first the high skilled physician. Notice that entropy for the short run
decision maker is initially higher than for the experimental decision maker, but the experimental
type settles on a higher entropy score. Initially, the experimental type will prescribe high variance
drugs, and she will not switch until the physician has enough information to make the alternatives
more attractive. In the long run the experimental type tries out more drugs, which implies higher
entropy in observed practice style.

The other cases mirror this result. The difference is that physicians with lower skill take more
time to learn. Thus, over the 3-year period in the simulation, the entropy score from the medium-
skilled physician is always lower for the experimental type than for the short-run type. Eventually,
the entropy of the experimental type will over take that of the short run physician. In the case

20Drugs prescribed in the US are typically evaluated using a randomized control trial. Meta-analysis of these studies
appear every few years in the medical literature so that professionals have access to the current results. See for
example Linde et al. (2015) and Cipriani et al. (2016).
21See Hamilton (1960).
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of the low skilled physician, learning is even slower and entropy is virtually identical for both the
short-run and experimental types over three years. What we are observing here is that the medium
and low skilled experimental physicians stick with the high variance drugs until they are sure they
are worse than the other alternatives. This example illustrates why some decision makers can be
observed prescribing “non-traditional” treatments.
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Figure 1. Effect of Physician Characteristics upon Entropy

In Figure (2) we plot the payoffs from treatment as a fraction of the maximum possible payoff.
Again, starting with the high skilled physician, notice that patient well-being is initially lower
than with the short-run physician, but eventually is very close to the maximum possible (1 in this
diagram). Thus, the initial experimentation can hurt a patient, though in the long run the patient’s
outcome should be better. The case of the medium skill physician reflects what we observed with
the entropy score - learning is slower, and in this simulation the outcome with experimentation is
never better than with a short-run decision maker. Finally, with the low skilled physicians, learning
is so slow that there is little difference in performance between short-run and experimental learning
styles.
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Figure 2. Effect of Physician Characteristics upon Patient Well Being

The point of these results is to illustrate that in the context of learning with noisy observations
one cannot make simple predictions - there is a complex interaction between physician skill and
preferences for learning through experimentation.

3.4. Dynamic Practice Style. Our framework can be naturally extended to deal with dynamic
measures of practice style. One of the patient characteristics that physicians observe is the drug
that patients are currently taking. For example, suppose that a physician begins with Sertraline
and the patient has an adverse reaction. A natural question is what is the best next choice? For
example, with antibiotics one typically starts with a common drug, and only progresses to more
powerful drugs if there is failure to cure. This sequence of choices can be viewed as a Markov process
- given the current drug, what is the probability of a particular drug being chosen subsequently?
In our BCBS claims data we know whether a patient has been prescribed any anti-depressant in
each month. Let m = n+ 1 be the number of drugs, where d = 0 corresponds to no drug. Dynamic
practice style at date t is the vector qtj ∈ ∆m2 :
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qtj [k +m× l] = fraction dk → dl,

the fraction of patients currently receiving drug k who are then prescribed drug l.22 If l = k then
a decision has been made to continue with the same drug.23

Dynamic practice style is related to static practice style at date t as follows: Given qtj the
fraction of patients who are prescribed drug d by physician j in period t is given by:

pdjt =
m∑
k=0

qjt [k +m× d] .

Define the vectors for each drug d:

mdjt [i] = qjt [i+m× d] /pdjt,

in which case we can write:
qjt = [p0jtm0jt, ..., pnjtmnjt] .

The properties of the entropy function imply that:

φ (qjt) = φ (pjt) +
n∑
d=0

pdjtφ (mdjt) .

In terms of normalized entropy we have:

Φ (qjt) = 1
2

{
Φ (pjt) +

n∑
d=0

pdjtΦ (mdjt)
}
,

and hence the normalized entropy of dynamic practice style is the average of the normalized entropy
for static practice style and the weighted average of the normalized entropy of transitions to each
drug observed.

From the concavity of the entropy function we have:

Φ
(
pj(t−1)

)
= Φ

(
n∑
d=0

pdjtmdjt

)
≥

n∑
d=0

pdjtΦ (mdjt) ,

which implies:
Φ (pjt) + Φ

(
pj(t−1)

)
≥ 2Φ (qjt) ≥ Φ (pjt) .

The vector mtjd represents the pathways to drug d. For example, suppose that for each patient,
the physician has a personal belief about the best drug, and never changes their choice, then
Φ (mdjt) = 0 and thus 2Φ (qjt) = Φ (pjt) , the lower bound. On the other hand, suppose that
the physician randomizes over her choices using the distribution pjt, then mdjt = pj(t−1), and we
have 2Φ (qjt) = Φ (pjt) + Φ

(
pj(t−1)

)
. Thus, depending on the correlations between choices, the

normalized entropy score for dynamic practice style can equal the upper or the lower bound.

22Alternatively, we could think in terms of an m*m transition matrix between drugs at t-1 and drugs at t. Stacking
the columns of the transition matrix would yield this vector.
23It is important to allow patients to remain with a previous medication, given that switching costs may be non-
trivial. Previous work by Coscelli (2000) looking at ulcer medications shows that patients are even reluctant to change
from branded drugs to equivalent generics.
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We use dynamic practice style is to think about the extent to which physicians follow accepted
practice as recommended by a national standards body (we use standards developed for the US,
UK, and Canada). Standards are seldom specific enough to tightly specify exactly what a physician
should do. However, many make suggestions about drug transitions, that is what to prescribe if
the current drug does not seem to be working. We can map transitions that violate these guidelines
into a vector:

Ps ∈ {0, 1}m
2
,

were Ps[k +m× l] = 1 implies that under standards s ∈ S = {Canada, UK,US}, if a patient is
taking drug dk then they should not next be prescribed drug dl. For each physician we can then
examine the effect of transitions that violate standards s. One nice feature of our analysis is that
we can compare the relationships between violations of different standards and outcomes using the
same sample of doctors. Ultimately, examining the extent to which violations of guidelines affect
patient outcomes will shed some light on utility of the guidelines themselves.

3.5. Summary. We have outlined a framework in which physicians must trade-off a higher prob-
ability of current treatment success against long-term success that can only be achieved via exper-
imentation. We show that even if physician preferences are fixed, the benefits of experimentation
vary with physician quality as measured by diagnostic skill, as well as with physician beliefs and
with treatment windows. We have also suggested entropy as a proxy for a physician’s propensity
to experiment. In our data we can make use of the division between specialist and non-specialist
prescribers as a proxy for physician diagnostic skill. We have also discussed the use of prescribing
guidelines. In what follows, we examine the relationship between entropy, following guidelines, and
patient outcomes.

4. Data

In order to examine the relationship between doctor practice style and patient outcomes, we
access a new national sample of claims data from Blue Cross Blue Shield Alliance for Health
Research (BCBS), a collaborative effort involving most of the regional BCBS plans. Specifically,
we first selected a 10% sample of all of the member numbers (for members aged between 18 and
64 as of January 2013) in the system between January 2013 to September 2016. BCBS had about
99 million members aged between 18 and 64 who had any claims over our sample period. Of the
9.9 million members we selected, about 4.5 million show up in the pharmacy claims, and of these,
723,818 members were ever prescribed antidepressants over the sample period. These members
constitute our core BCBS sample. For each of these members, we generate a panel of data with a
record for each month and year that they appeared. In each time period we know whether they are
taking any anti-depressant drug, what drug it was, who prescribed it, claims for drugs, outpatient
visits, emergency room (ER) visits, and inpatient visits, and total health care costs generated by
summing all claims across inpatient, outpatient, and pharmacy data bases.

One contribution of our study is to focus on ER visits as an indicator of adverse patient outcomes.
In the US, patients with mental health crises are uniformly advised to proceed to the nearest ER
for assessment even if the nearest institution does not have a psychiatric facility. The patient will
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then be assessed and could be transferred elsewhere for an inpatient hospital stay if necessary. ER
visits (and subsequent hospitalizations) for mental health indications are much more numerous than
suicides and have a substantial impact on health care costs.24 Our own calculations using hospital
records data from the Health Care Utilization Project (HCUP) suggest that in 2014 there were
379.9 ER visits annually per 1,000 individuals.25 Of these, 50.9 listed a mental health diagnosis on
the hospital record; of these, 19.2 listed mood disorders as an indication and 18.6 listed anxiety.
Anti-depressants are frequently prescribed for both of these indications.

A difficulty with using the BCBS claims data to examine practice style is that most doctors are
likely to see patients with many types of insurance. Hence, it may not be meaningful to construct
measures of practice style using only the BCBS data as we could be omitting many of a doctor’s
other patients. We remedy this problem by computing the entropy measure of physician practice
style using a second data base from IQVIA, and then matching in this data using the doctor’s name
and state of practice.26 We are able to find a match in the IQVIA data for 74.0 percent of the
doctors in our BCBS sample. We also match in physician characteristics such as specialty from the
National Plan and Provider Enumeration System (NPPES).

We follow Berndt et al. (2015) and limit our analysis to physicians who wrote 12 or more
prescriptions for anti-depressants in the IQVIA data in at least one year of the sample, and who
were not missing physician characteristics.27 We allow the doctor’s entropy score to vary over time,
calculating a separate entropy score for each doctor for each year of data. We match 2013 BCBS
data to 2012 doctor entropy data, and so on.28 Since there are 32 different anti-depressant molecules
in use over our sample period, the entropy score is computed using m=32. However, the top eleven
molecules accounted for 94.78% of prescriptions in 2014, and when we focus on transitions from
one drug to another we use these eleven molecules plus “all others” and drug combinations (which
we dub “cocktails.”)

24A few studies focus on anti-depressant prescription and suicide using country-level data. Ludwig et al. (2009)
study the relationship between the use of Selective Serotonin Reuptake Inhibitors (SSRIs) and suicide, relying on
institutional differences in, for example, when SSRIs were approved to explain variation in their use over time within
countries. They find that an increase in prescribing of SSRIs of one pill per capita reduced suicide by five percent.
Berndt et al. (2015) study a reduction in the use of SSRIs for youths after labels warning that SSRIs could increase
suicide risk in young people were mandated and show that suicides went up following the mandate. Suicide is a
sufficiently rare outcome that within-country studies tend to have low power. Yet cross-country comparisons may be
contaminated by other factors that are changing differentially across countries.
25HCUP is a collaboration between state governments and the federal governments in which states allow their
administrative hospital data to be made available through a central registry. However, only some states include ER
data, and only a subset of those states identify a patient’s county of residence. Our analysis of ER visits focused on
six states that meet these criteria: Arizona, Florida, Kentucky, Maryland, New Jersey, and New York.
26IQVIA (formerly known as IMSQuintiles) is a public company specializing in pharmaceutical market intelligence.
As of 2014, IQVIA directly surveyed 86% of retail pharmacies, with the remaining prescriptions imputed to add to
industry totals using a patented projection method. The data includes information about each provider from the
American Medical Association, including specialty.
27In principal, one can only get a good measure of practice style if one sees enough patients treated by a particular
doctor. In addition to dropping doctors with fewer than 12 prescriptions in any year, we explored samples in which
we kept only doctors with numbers of patients above the median in the data, and found that mean entropy scores
(computed over patients in the sample) were quite similar. This follows from the fact that most patients are seen by
doctors with many prescriptions.
28Due to data limitations, both 2015 and 2016 BCBS data are merged to entropy measures for 2014.
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Figure (3a) uses the IQVIA data to illustrate the variation in favorite drugs prescribed across
the U.S. In terms of our model, if all physicians were focused on getting the best short-run results
for their patients, and there was one best drug for most patients, then they would all start with the
same drug, the one shown to be “best” in clinical trials. However, one can clearly see differences
in the favorite anti-depressant molecule prescribed, with Sertraline, Citalopram, and Fluoxetine
all dominating in some areas.29 Figure (3b) shows variation in entropy scores across the country.
Scores range from about 0.5 to 0.7, indicating significant differences in the range of drugs prescribed
across the country. These patterns are suggestive of important differences in practice style, though
it is possible that patient needs could vary systematically across areas.

Figure 3a. Most popular anti-depressants, by county, by active ingredient, 2014

Another possibility is that provider expertise could vary systematically across the country, for
example if some areas have more psychiatrists per capita. Table (2) provides further detail about
the breakdown of anti-depressant prescriptions and entropy scores across types of providers in the
IQVIA data. Table (2) shows that the average provider who wrote more than 12 prescriptions for
any anti-depressant in any year of the IQVIA data, wrote 302 such prescriptions annually. Not
surprisingly, psychiatrists wrote 1033 prescriptions annually compared to 451 for general practi-
tioners. What may be more surprising is that many other MDs write anti-depressant prescriptions,
with an annual mean in this group of 74 prescriptions per provider. Another surprising result is
that most anti-depressant prescriptions are not written by psychiatrists, but by GPs and MDs who
are likely to have very little specific training in the use of anti-depressants. The model discussed
above predicts that providers with less expertise should do less experimentation. Table (2) shows
that in keeping with this prediction, psychiatrists have the highest entropy scores, followed by GPs,
with other MDs having substantially lower entropy scores. Entropy scores by physician cohort also
follow this broad pattern, with “prime age” practitioners tending to have higher entropy scores
than either very old or very young physicians.
29Sertraline is the generic for Zoloft; Citalopram is the generic for Celexa, and Fluoxetine is the generic for Prozac.
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Figure 3b. Average Physician Entropy, by county, 2014

As discussed above, in addition to entropy, a second indicator of a physician’s willingness to ex-
periment is the extent to which they follow practice guidelines. We will consider guidelines provided
by the American Psychiatric Association (Gelenberg et al. (2010)), the UK National Institute for
Health and Care Excellence (NICE), and the Canadian government. The NICE guidelines suggest
that clinicians should start with an SSRI, and if that does not work, then they should consider a
drug in a different class (NICE, 2017). The Canadian guidelines point out that even within drug
classes, some drugs are more efficacious and suggest that if the first drug does not work, clinicians
should switch to a more effective drug. They provide rankings based on comparisons of the effec-
tiveness of different drugs as first line treatments in clinical trials (Kennedy et al. (2016)).30 The
American Psychiatric Association’s (APA) guidelines for treatment of major depressive disorder
advise that if one drug is not effective, the patient should switch to another but they do not specify
what that should be. They do however note that “the following medications are optimal for most
patients: SSRIs, SNRIs, Mirtazapine, and Bupropion” (page 31, Gelenberg et al. (2010)) which
excludes two drugs that together accounted for 17.49% of the market in 2014 (see Appendix Table
C1). In addition, all guidelines urge caution in the use of “drug cocktails.” At issue is that most
possible combinations have not been evaluated in clinical trials, so the possible drug interactions
or side effects are largely unknown.

Entropy and the violation of guidelines are closely related since following a guideline means
ruling out choices that a doctor would otherwise have used. Figure 4 illustrates this relationship by
showing the actual distribution of entropy scores in the data and comparing it to the distribution
that would be obtained if all physicians adhered to the APA guidelines. In the counter-factual

30If one takes these rankings literally, then some drugs are completely dominated by other drugs and should never
be prescribed.
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distribution, the prescriptions for medications that violate these guidelines are distributed over the
remaining allowed options in proportion to actual prescription patterns. Figure 4 shows that the
right tail of the entropy distribution would be compressed, and that the whole distribution would
shift to the left. The figure illustrates that the APA guidance, while quite loose, would still be
binding on practice styles if it were followed uniformly.

Figure 4. Following guidelines lowers entropy (data for 2013)

Table 3 provides an overview of the BCBS samples used in the estimations described below. As
discussed above, it is possible and expected that patient heterogeneity drives some of the variation
in use of anti-depressant drugs. Suppose sicker patients, or patients who are getting worse, are
more likely to see psychiatrists as outpatients. Then, since psychiatrists have higher entropy scores
on average, one might find that higher entropy was associated with worse patient outcomes. In
order to account for this type of matching, Table 3 divides patients into those who ever saw a
psychiatrist as an outpatient, and those who did not.31 The first three columns are for the sample
for whom we have non-missing entropy scores, while the last three columns are for the patients
with a non-missing lagged transition (this sample is larger because it does not require matching to
the IQVIA data). Table (3) shows that on average we follow depressed patients for about 11 to 12
months, and that they take anti-depressants for an average of 8 months during this time period.

31We do not divide patients into whether they are seeing a psychiatrist or not currently, because the same patient
might start seeing a psychiatrist because they are getting worse. However, given the 11 or 12 month time period that
we follow the average patient, it is safe to assume that patients who ever see a psychiatrist during this time interval
will be seeing more skilled providers on average.
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Table 1. Effect of Anti-Depression Drugs on Hamilton 17 Score for Depression
Severity (mean score before treatment is 25.2)

Active Ingredient Brand Name(S) Class
of
Drug

Market
Share 2014,
Percent

Depression
Reduction
Effect

Standard
Deviation
Effect

Sertraline Zoloft SSRI 14.63 -9.90 7.78
Citalopram Celexa SSRI 12.83 -10.30 7.08
Fluoxetine Prozac SSRI 10.57 -9.40 6.13
Escitalopram Lexapro SSRI 9.68 -10.40 5.97
Paroxetine Paxil SSRI 5.32 -9.80 6.14
Trazodone Oleptro SARI 9.35 -15.70 9.00
Duloxetine Cymbalta SNRI 6.84 -10.70 7.00
Bupropion Wellbutrin NDRI 10.34 -12.00 8.70
Amitriptyline Elavil Tricyclic 5.18 -14.00 8.70
Venlafaxine Effexor SNRI 7.09 -12.10 8.71
Mirtazapine Remeron Tetracyclic 2.82 -14.00 7.70
Placebo - -8.00 6.67

Notes: These effects are culled from a number of meta-analyses of drug effects.
See the unpublished appendix for details

Table 2. Summary of Prescribing and Physician Entropy Scores in 2013, by Spe-
cialty Data on all prescriptions from Data IQVIA

All physicians GPs Psychiatrists Other medical
# Prescriptions (millions) 231.6 120.7 51.1 15.9
# Prescribers 767,985 267,898 49,523 214,928
Prescriptions/Provider 301.6 450.5 1032.5 73.8

Average Entropy Scores by Medical School Graduation Year
<1975 0.624 0.624 0.661 0.503
1976-1985 0.628 0.636 0.662 0.503
1986-1995 0.623 0.635 0.655 0.482
1996+ 0.613 0.630 0.637 0.448
Notes: Entropy calculations include only providers with ≥ 12 scripts in the year and are based on m = 32 separate
molecules.
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Table 3. Summary of BCBS Patient Data by Patient Outpatient Provider

Non-missing Entropy Sample Non-missing drug transition sample

Patient Type: All Ever Saw Never Saw All Ever Saw Never Saw
Patients Psychiatrist Psychiatrist Patients Psychiatrist Psychiatrist

# members 452,080 83,045 369,035 593,499 112,429 481,070
# member-months 5,413,368 1,117,687 4,295,681 6,556,938 1,424,983 5,131,955
# months/member 11.974 13.459 11.640 11.048 12.675 10.668
# months
antidepressants/member

8.286 9.478 8.091 8.359 9.723 8.041

# changes in entropy/member 2.028 2.392 1.946
# member-month with
non-missing drug transitions

6,370,152 1,383,792 4,986,360

Percent drug transitions from t-2 to t-1 that violate each guideline (as a percent of row 5)

UK 0.107 0.130 0.101
Canada 2.380 2.172 2.438
US 3.639 4.635 3.363
Cocktail 4.817 9.406 3.544

Costs (in Jan. 2013 dollars)

total monthly cost: 50th p’tile 109.14 218.21 86.83 119.62 231.72 95.38
90th p’tile 1411.77 2025.54 1241.93 1490.91 2151.28 1296.71
pharmacy cost: 50th p’tile 23.95 48.36 20.15 26.54 53.06 22.29
90th p’tile 519.54 794.13 448.00 542.58 817.06 464.73
professionals cost: 50th p’tile 0.00 19.60 0.00 0.00 40.74 0.00
90th p’tile 504.02 699.73 451.21 523.73 729.02 464.25
facility cost: 50th p’tile 0.00 0.00 0.00 0.00 0.00 0.00
90th p’tile 108.34 198.30 88.63 132.70 253.13 105.76
99th p’tile 7825.66 9765.25 7228.97 8530.23 10886.29 7765.15

Facility Use

1 if any ER/hospitalization 0.0237 0.0323 0.0214 0.025 0.035 0.022
1 if any ER/hosp. for mental
health

0.0097 0.0170 0.0077 0.011 0.019 0.008

Notes: The treatment period is defined as up to 1 month before the first observed month with an anti-depressant script up till 3 months after the last
observed month with an anti-depressant script. ER/Hosp. visits are considered to have been for mental health if that is one of the indications listed.
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The second panel of Table (3) provides information on how often patients changed medications
in a way that violated one of the prescription guidelines discussed above. The table indicates that
relatively small fractions of transitions actually violated a guideline, though the informal APA
guideline recommending against trazadone and the older tricyclic anti-depressant amitriptyline is
most likely to be violated, especially in patients who ever saw a psychiatrist as an outpatient. Also,
relatively large numbers of patients receive a cocktail of drugs, especially from psychiatrists. See
the Appendix Table C2 for a transition matrix that shows the frequency of each transition between
drugs and an example of how we implement the APA guidelines in our data.

The third and fourth panels of Table (3) present data on the costs of care. These include
total monthly costs, and costs broken into pharmacy, professional (e.g. doctor visits), and facility
(e.g. hospital) claims. All of these costs are extremely right skewed: The modal patient is not
very expensive, while the 90th percentile (or in the case of facilities costs, the 99th percentile)
patient incurs considerable costs, especially when one considers that these are monthly numbers.
Since this is BCBS claims data, these figures represent the actual amount paid by BCBS to the
various providers. One can also see that the division of patients into those who saw psychiatrists as
outpatients and those who did not is meaningful. The former have higher costs in every category
suggesting that they are in fact sicker. These patients will also, by construction, be seeing higher
skilled practitioners, on average.

In addition to costs, we also look at indicators for whether the patient used the ER or was
hospitalized. We focus special attention on these outcomes because they represent a severe crisis
for a patient, which may be extremely disruptive to their lives, resulting in stigma, lost work or
school, and so on. Overall, about 2% of these depressed patients visit an ER or are hospitalized
in any given month. Hospital personnel can list many diagnosis codes on the claim forms, and
have some financial incentive to include all diagnoses that will indicate a more complex case. On
the other hand, it is not clear whether an ER visit for something like a self-inflicted wound will
necessarily receive a mental health code. Therefore, we look at all ER visits, and also at those that
have any mental health diagnosis listed. About 1% of these patients have an ER or hospital visit
that lists a mental health diagnosis in any given month. The risk is more than twice as large for
patients who have seen a psychiatrist as an outpatient compared to other patients.

4.1. Estimation: In order to examine the effects of entropy on patient outcomes, we estimate
models of the form:

(15) Yijt = a0 + b1φjt−1 + b2xi + b3countyi + b4yt + eijt,

or alternatively:

(16) Yijt = ai + b1φjt−1 + b2yt + eijt,

where Y is one of the outcomes discussed above, x are the observable patient characteristics (age
category and gender), county indicates county fixed effects, and y indicates year fixed effects. The
second specification, which includes patient fixed effects, does not include the observable patient
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characteristics or county fixed effects. By including a patient fixed effect, we control for unobserved
characteristics of the patient including their mean overall severity, history prior to appearing in
the claims data, taste for medication, and so on. We estimate the model separately for patients
who ever saw a psychiatrist as an outpatient and for those who did not, in order to allow for the
effects of experimentation to be different for patients who see providers with different skill levels,
on average. Also, it is important to note that the doctor’s entropy score is measure at t-1 for an
outcome measured at time t, so that the measure of practice style always preceeds the outcome.

In order to examine the effects of violations of treatment guidelines, we estimate models using
the same outcomes of the following form:

(17) Yijt = a0 + b1V ijt−1 + b2xi + b3countyi + b4yt + eijt,

or alternatively:

(18) Yijt = ai + b1V ijt−1 + b2yt + eijt,

where V is a vector of four indicators each equal to one if a drug transition between t-2 and
t-1 violated one of the three guidelines discussed above, or if it involved the prescription of a drug
cocktail. Hence, in this formulation, we look at the outcome one period after a change in the drug
regime, that is, at period t.

These regression models will show how our proxies for experimentation are related to patient
outcomes. Including patient fixed effects offers a powerful way to control for patient heterogeneity
in order to isolate the effects of physician practice style. All standard errors are clustered on the
physician’s ID in order to allow for correlations in treatment between patients seeing the same
physician.

5. Empirical Results

Regressions of patient outcomes on provider entropy scores are shown in Table 4 for the full
sample, as well as for the two subsamples defined by whether the patient had ever seen a psychiatrist.
Odd numbered columns control for county fixed effects, broad patient age categories and gender.
Even numbered columns control for patient fixed effects. The first two columns in the first row
indicate that patient heterogeneity is important: In the regressions without patient fixed effects, it
appears that provider entropy increases costs, whereas once patient fixed effects are included in the
model, entropy is shown to have a significant negative effect on costs. Since the dependent variable
is in terms of log costs, the coefficient can be interpreted as an elasticity: A one unit change in
entropy would lead to a 12.7% decrease in total costs. In practice entropy varies from around 0.4
to 0.8 as shown in Figure 4, with most of the mass between 0.5 and 0.75. Considering an increase
in entropy of 0.25 then, one could expect to see a decrease in costs of 3.2%. The remaining columns
show that an increase in entropy is associated with a large decrease in non-drug costs (a .25 increase
in entropy would reduce these costs by 5.4%). Some of this reduction is coming from reductions
in the probability of ER visits and hospitalizations. An increase of 0.25 in physician entropy is
associated with a 0.125 point decline in the probability of such visits on a baseline of 2.4%, or a
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5.2% reduction in the probability of any ER visit or hospitalization. Similarly, the probability of
an ER visit or hospitalization specifically for a mental health diagnosis also declines by about 5.0%
with an increase of 0.25 in physician entropy.

These overall patterns reflect some differences in the effects of physician entropy by patient group.
We can think of the group who ever saw a psychiatrist as an outpatient over the sample period
as both sicker on average, and seeing a more skilled practitioner on average. Including a patient
fixed effect controls for patient heterogeneity so that in the fixed effects models we can interpret
differential effects of entropy as reflecting differences in average physician skill net of differences in
the patient’s average condition. Among patients who are seeing these higher skilled practitioners,
higher entropy is associated with a reduction in ER visits and hospitalizations, both overall and
specifically for mental health. In this population, an increase of 0.25 in the provider entropy score
reduces the probability of any ER visit or hospitalization by 10.2% whereas the probability of a
visit specifically for a mental health diagnosis is reduced by 13.2%. However, there is no significant
effect of entropy on costs in this group once patient fixed effects are included, suggesting that the
savings in terms of facilities charges are offset by increases in other costs. For example, a more
skilled provider is likely to be more expensive, and may require more visits.

The group of patients who never saw a psychiatrist as an outpatient are less sick on average
and are seeing less skilled providers. In models that include patient fixed effects to deal with
patient heterogeneity we do not see significant effects of provider entropy scores on ER visits
or hospitalizations, though we do see a reduction in total costs and in all non-drug costs. The
coefficients indicate that a 0.25 increase in provider entropy at month t-1 would be associated with
a 4.5% reduction in total patient costs at month t.

Table (5) shows the estimated effects of having a drug transition from month t-2 to t-1 that
violated treatment guidelines on patient outcomes in month t. While transitions that violated the
UK guidelines increase costs without usually increasing ER visits or hospitalizations, transitions
that violated the other treatment guidelines appear to have uniformly harmful effects, increasing
costs, and ER visits and hospitalizations. Panel A, which shows the results for all patients, indicates
that the coefficient estimates are generally smaller when patient fixed effects are included in the
model (except for the Canadian guidelines), indicating that physicians are more likely to violate
guidelines or to prescribe drug cocktails for sicker patients. The estimates suggest, for example, that
violating the U.S. guidelines would increase total costs by 28.8%, increase the probability of any
ER visit or hospitalization by 16.0%, and increase the probability of an ER visit or hospitalization
specifically for mental health by 18.2%. Prescribing drug cocktails has a similar effect on ER
visits and hospitalizations, but sharply increases total costs, by 50.4%. Some of the higher cost is
mechanical in the sense that taking more drugs will usually cost more than taking less drugs. But
column (4) shows that total non-drug costs also rise by 35.6%.
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Table 4. Regressions of Patient Outcomes on Lagged Provider Entropy

Notes: All models include year and month fixed effects. Regressions in odd numbered columns include county fixed effects, patient age, and gender.
These controls are dropped when patient fixed effects are added. Standard errors are clustered on provider ID.
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Table 5. Outcomes at t when Drug Transition from (t-2) to (t-1) Violated Pre-
scribing Guidelines

The next two panels of Table (5) examine the effects of violations of the three different treatment
guidelines on the two subsamples of patients defined by whether or not they ever saw a psychiatrist
as an outpatient. As discussed above, patients who have seen a psychiatrist are seeing providers
who are more skilled on average. The effects are quite similar across the two groups indicating
that violations of treatment guidelines are undesirable whether they are committed by more or less
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skilled practitioners. For instance, although the point estimates on ER visits and hospitalizations
are higher in the patients who ever saw a psychiatrist as an outpatient, this is because the baseline
risk of this outcome is higher in this group. The percentage effects are similar to those just
described: For example, a violation of U.S. guidelines would increase the probability of any ER
visit or hospitalization by 17.1%, and the probability of an ER visit or hospitalization for mental
health by 21.0%.

Overall, the results in Table (4) indicate that higher entropy is associated with better patient
outcomes and, as predicted, higher entropy has more positive effects among more skilled practi-
tioners. Table (5) suggests, however, that there is a limit on experimentation and a useful role for
guidelines that restrict some prescribing practices since violating guidelines leads to worse patient
outcomes regardless of the skill level of the practitioner. Hence, empirically there seems to be a
“sweet spot” in terms of physician experimentation.

6. Conclusions

We think of the sequence of drug choices as a multi-armed bandit problem, which involves a
trade off between experimenting to learn more about what works best for a particular patient,
and systematically choosing the alternative with the highest expected payoff. Experimentation
will necessarily involve mistakes. Hence, some medical “errors” may be unavoidable pitfalls in
the search to find the best treatment for a given patient. The novel feature of our model is that
the payoff to experimentation depends on physician diagnostic skill as well as the time horizon
(or discount factor) and beliefs. One insight of the model is that there will not necessarily be
one correct treatment, even for identical patients since the best treatment will also depend on the
doctor who is treating the patient. Other things equal, experimentation will be most beneficial
when the physician is better able to draw the correct inference from the experiment, which is how
we think of diagnostic skill. This insight is likely to be applicable in other markets with expert
decision makers. For example, other things being equal, a skilled surgeon should perform more
surgeries on marginal patients than a less skilled surgeon.

A second contribution of our paper is to suggest using the Upper Confidence Bound (UCB)
algorithm from the machine learning literature both as a tractable way to solve the bandit problem,
and as a model that approximates how decision makers may actually behave (we know that they do
not typically calculate the Gitten’s index). We show that the UCB will attain the optimal payoff as
the number of time periods becomes large and that it includes short-run (myopic) Bayesian optimal
choice as a special case. Using simulations based on data from clinical drug trials, we illustrate
the differences between doctors who are optimally experimental (i.e. follow the UCB algorithm
with a fixed tuning parameter) and those who choose the drug with the highest expected value in
the current period at each time period. These simulations suggest that whether it is good (from
the patient point of view) to have an “experimental” doctor or not is an empirical matter which
depends on the skill of the physician as well as the treatment time horizon.

Armed with these insights, we turn to claims data on hundreds of thousands of patients who
were treated with anti-depressants to evaluate the relationship between the doctor’s propensity

35



to experiment and patient outcomes. Using Shannon’s entropy score as an empirical proxy for
a doctor’s propensity to experiment we first show that as predicted, higher skilled providers are
more experimental. Also, as an empirical matter and over the range of our data, seeing a more
experimental provider improves a patient’s outcomes measured using total costs, non-drug costs,
emergency room visits and hospitalizations. These effects can be quite large, for example, among
patients who ever saw a psychiatrist as an outpatient, an increase of 0.25 in the provider entropy
score reduces the probability of an ER visit or hospitalization with a mental health diagnosis by
13.2%. We also look at a more dynamic measure of practice style by examining the effects of
transitions from one drug to another. Although following guidelines mechanically lowers entropy if
the guidelines are binding on behavior, these results suggest limits on the value of experimentation
in that patients whose doctors violate prescribing guidelines have worse patient outcomes. For
example, drug transitions between t-2 and t-1 that violate U.S. guidelines increase the probability
of an ER visit or hospitalization with a mental health indication at time t by 21.0%. These findings
suggest that optimal treatment guidelines may be loose enough to allow some experimentation, but
tight enough to rule out bad practice.

Our results have number of implications for health policy. Much of the literature about varia-
tions in observed practice style begins with the assumption that conditional on price and patient
characteristics there is a well defined optimal choice.32 From this perspective, the goal of health
policy is mainly to get the price “right” so that the optimal choice will be made. Our results show
that in the presence of match specific treatment and learning there cannot be a single “optimal”
choice. Rather, there is an optimal practice style that varies with physician skill and the uncer-
tain information that the physician collects while treating the patient. Still, some treatments are
ill advised, and patients are better off on average when physicians follow national standards that
recommend against certain treatments. Overall, our results suggest that optimal policy should give
physicians discretion within well defined boundaries; that is physicians need to be given the right
to practice medicine with limits on behaviors that fall outside of accepted practice.

Appendix A. Proofs of Propositions

Proposition 1. The value of information about drugs A and B is:

Vd = σdL

(
µA − µB

σd

)
,

where σ2
2 = ρ

ρd(ρ+ρd) , and, for x ≥ 0, L (·) is the unit-loss function defined by:

L (x) = (1− F (x)) (φ (x)− x) ,

F (x) is the cumulative distribution function for the Normal distribution and φ (x) = E {γ|γ ≥ x}
is the expected value of a lower truncated Normal distribution, γ ∼ N (0, 1).

32For example Skinner (2012)’s nice review of the literature on regional variation is organized around the factors that
lead physicians to choose one treatment versus another.
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Proof. We begin with VA, the value of information for the drug with the highest expected payoff
in period 1. If there is no experimentation, then the choice in period 1 is A, with expected value
µA > µB.

If the physician tries A in period 0, then the expected value given the signal is y0 is:

E {y2|y1, d0 = A} = E {eA|y1, d0 = A} = ρy1 + ρAµA
ρ+ ρA

.

Similar to (3) we can write y1 = µA + sAγ1, where γ1 ∼ N (0, 1) and s2
A = 1

ρ + 1
ρA

= ρ+ρA
ρρA

is the
variance of y1. Let ∆ = µA − µB > 0, then the value of information in period 1 as:

VA = E

{
max

{
µB,

ρy1 + ρAµA
ρ+ ρA

}}
− µA

= E

{
max

{
−∆, ρ (y1 − µA)

ρ+ ρA

}}
= E

{
max

{
−∆, ρ

ρ+ ρA
sAγ1

}}

= E

{
max

{
−∆, ρ

ρ+ ρA

√
ρ+ ρA
ρρA

γ1

}}
,

= σAE {max {−∆/σA, γ1}} ,

where let σ2
A = ρ

ρA(ρA+ρ) . We can now write the value of information as:

VA = σAE

{
max

{
− ∆
σA

, γ

}}
,

where γ is the standard Normal distribution. This expression can be written in terms of the
unit-Normal linear loss function (Raiffa and Schlaifer (2000)) for x ≤ 0:

L (x) = E {max {x, γ}}

=
∫ x

−∞
xf (z) dz +

∫ ∞
x

zf (z) dz

= F (x)x+ (1− F (x))φ (x) ,

where f () , F (), are the distribution and cumulative distribution functions for the standard Normal,
while φ (x) = E {γ|γ ≥ x} is the expected value from an upper truncated Normal distribution.
Notice that:

limx→−∞L (x) = 0

and that Lx (x) = F (x) > 0. Hence this loss function is positive and increasing with x ≤ 0. Thus
we have:

VA = σAL (−∆/σA) > 0.

When x ≥ 0 the unit lost function is defined by:

E {max {x, γ}} = L (x) + x,
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and hence:

L (x) = E {max {x, γ}} − x

= (1− F (x)) (φ (x)− x)

= L (−x) ,(19)

from which we get:
VA = σAL (∆/σA) .

Next, consider VB. The formula is similar, but differs due to the fact that the expression is
compared to the same counterfactual:

VB = E

{
max

{
µA,

ρy1 + ρBµB
ρ+ ρB

}}
− µA,

= E

{
max

{
0, ρ

ρ+ ρB
sBγ1 −∆

}}
.

= σBE {max {∆/σB, γ1}} −∆.

Now from (19) and the fact that ∆ > 0, we have:

VB = σBL (∆/σB) .

�

Corollary 1. Experimenting with drug B has more value than drug A if and only if the uncertainty
associated with drug B, σB, is higher than the uncertainty associated with drug A, σA. The value
of such experimentation falls with the difference in expected effects (µA − µB).

Proof. The function L (x) is symmetric around zero, with its maximum value at 0, and decreases
to zero as x→ ±∞. This immediately implies that the value of information falls with the absolute
value of the differences in expected values, |µA − µB|. The effect of the uncertainty follows from:
∂Vd
∂σd

= L

(
µB − µA

σd

)
−
(
µB − µA

σd

)
L′
(
µB − µA

σd

)
= F

(
µB − µA

σd

)(
µB − µA

σd

)
+
(

1− F
(
µB − µA

σd

))
φ

(
µB − µA

σd

)
−
(
µB − µA

σd

)
F ′
(
µB − µA

σd

)
=
(

1− F
(
µB − µA

σd

))
φ

(
µB − µA

σd

)
> 0

Finally, one can easily show that σB ≥ σA if and only if ρA ≥ ρB, which completes the proof. �

Proposition 2. For any period T of treatment, and any treatment strategy δj the physician’s payoff
satisfies:

Uij (T ) ≤ −log (T )
{

2 (n+ 1)σ2
j +O (1)

}
,

where n+ 1 is the number of possible treatments (including prescribing no drug).
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Proof. Notice that we can rewrite:

−Uij (T ) = E


T∑
t=1

∑
d∈D

1 [d = dit] (e∗i − eid)

 ,
=
∑
d∈D

E

{
T∑
t=1

1 [d = dit] (e∗i − eid)
}
,

=
∑
d∈D

E {nid} (e∗i − eid) ,

≥
∑
d∈D

{
2

(e∗i − eid) ρj
+O (1)

}
log (T ) (e∗i − eid) ,

≥ log (T )
{

2 (n+ 1)σ2
j +O (1)

}
,

where 1 [d = dit] is the indicator function - 1 if d = dit and zero otherwise, and ρj = 1
σ2

j
is the skill

of the physician. �

The proof of proposition 3 follows immediately from the following, more precise version of the
same result:

Proposition 3. Suppose that the effects of the drugs are uncorrelated, K ≥
√

2πe and β ≥ 1.02
then with an uninformative prior:

0 ≥ UUCBij (T ) ≥ −
∑
d∈D

(e∗i − eid)


(

4β2σ2
j

(e∗i−eid)2

) 2log
(

K√
2π

)
+ 2log (T )

−log (2)− loglog
(
KT√

2π

) 
+ 2
K (1 + logT )



Proof. The proof is a modification and strengthening of Reverdy et al. (2014), appendix B. To
decrease the clutter in notation, the subscript j is omitted. Begin with:

nTid =
T∑
t=1

1 [dt = d]

≤
T∑
t=1

1 [Q (d, zit) > Q (d∗i , zit)]

≤ η +
T∑
t=1

1
[
Q (d, zit) > Q (d∗i , zit) , nt−1

id ≥ η
]
,(20)

where η is a positive integer. At time t the physician picks d over d∗i only if:

Q (d, zit) ≥ Q (d∗i , zit) .
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This is true when at least one of the following equations holds:

µtid∗ ≤ e∗i − Ctid∗(21)

µtid ≥ eid + Ctid(22)

e∗i < eid + 2Ctid(23)

where Ctid =
(

σ√
s2

id
+nt

id

)
F−1

(
1− 1

Kt

)
and s2

id = σ2

Σi0[d,d] is the ratio of the variance of the physi-
cian’s observation error over the prior variance in beliefs. Otherwise, if these 3 equations do not
hold, then:

Q (d∗, zit) = µtid∗ + Ctid∗ > e∗i ≥ eid + 2Ctid > µtid + Ctid = Qti,

and option d∗ is picked over d at time t.
The next step is to compute the probabilities of (21) and (22). Notice, that conditional upon

ntid then

µti [d] ∼ N
(
s2
idµid0 + ntideid
s2
id + ntid

,
ntidσ

2(
s2
id + ntid

)2
)
.

Equation (21) will hold if:

(24) e∗i ≥ µti [d∗] + σ√
s2
id∗ + ntid∗

F−1 (1− αt) .

We can write

µti [d∗] = s2
idµid0 + ntideid
s2
id + ntid

+
σ
√
ntid∗

s2
id∗ + ntid∗

z,

where z ∼ N (0, 1). Thus (24) holds iff:

z ≤ −
√
ntid∗ + sid∗2

ntid∗
F−1 (1− αt)

+ s2
id∗
(
eid∗ − µ0

id∗
)

σ
√
ntid∗

.

For an uninformative prior s2
id∗ → 0+ and hence (21) holds if and only if z ≤ −F−1 (1− αt), and

therefore for an uninformative prior:

Pr [(21) holds] = αt = 1
Kt

.

Similarly, (22) with an uninformative prior holds if:

Pr [(22) holds] = αt = 1
Kt

.

The next step is to consider (23). It holds if:

eid∗ < eid + 2σ√
s2
id + ntid

F−1 (1− αt) .
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Letting ∆id = eid∗ − eid, this implies:

∆id <
2σ√

s2
id + ntid

F−1 (1− αt) .

From Theorem 1 of Reverdy et al. (2014) we have for β ≥ 1.02:

F−1 (1− αt) < β
√
−log

(
−
(
2πα2

t

)
log

(
2πα2

t

))
,

which in turn implies:

∆2
id

4β2σ2

(
s2
id + ntid

)
< −log

(
−
(
2πα2

t

)
log

(
2πα2

t

))
= log

(
K2t2

2π

)
− loglog

(
K2t2

2π

)
.

Notice that log (x)− loglog (x) is increasing in x for x ≥ e, and K ≥
√

2πe, and since T ≥ t ≥ 1
we have:

∆2
id

4β2σ2

(
s2
id + ntid

)
< log

(
K2T 2

2π

)
− loglog

(
K2T 2

2π

)

< 2log
(
K√
2π

)
+ 2log (T )− log (2)− loglog

(
KT√

2π

)
.

Thus for an uninformative prior (s2
id → 0) we have that (23) never holds if ntid > η (T,K), where:

η (T,K) =
(

4β2σ2

∆2
id

)(
2log

(
K√
2π

)
+ 2log (T )− log (2)− loglog

(
KT√

2π

))
.

From (20) we have for η = η (T,K):

E
{
nTid

}
≤ η +

T∑
t=1

Pr
[
Q (d, zijt) > Q (d∗i , zijt) , nt−1

id ≥ η
]

= η +
T∑
t=1

Pr
[
equation (21) , nt−1

id ≥ η
]

+
T∑
t=1

Pr
[
equation (22) , nt−1

id ≥ η
]

< η + 2
K

T∑
t=1

1
t
≤ η + 2

K
(1 + logT )(25)

From this we get that the payoff is:

UUCBi (T ) = −
∑
d∈D

∆idE
{
nTid

}
which with (25) completes the proposition. �

Appendix B. Drug effects and dropouts: How the data for Table 1 is constructed

B.1. Overview. This document will go drug-by-drug and show how the data used to model doctor
tastes in the simulations were constructed. All cited papers are listed in the bibliography at the
end. Each drug is listed by its pharmaceutical name, with its primary trade name included in
parentheses. All effect means and standard deviations use the Hamilton-17 (HAMD-17) scale as
their metric of improvement. Market shares were computed by the authors using the 2014 IQVIA
data.
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B.2. Sertraline HCL (Zoloft).
(1) Effects: All effect data were drawn from Hieronymus et al. (2015) table 2, which includes

multiple sertraline studies. First, the average was taken over all sertraline studies to get
average means and standard deviations of the HDRS-17 score both at baseline and endpoint.
Mean effects were computed as the difference between average baseline score and average
endpoint score. To compute standard deviations, we take advantage of the assumption that
baseline scores and drug effects are independent. Under this assumption,

σ2
endpoint = σ2

baseline + σ2
effect

Solving for σeffect, we have:

σeffect =
√
σ2
endpoint − σ2

baseline

B.3. Citalopram HBR (Celexa).
(1) Effects: All effect data were drawn from Hieronymus et al. (2015) table 2, which includes

multiple citalopram studies. Means and standard deviations were computed using an iden-
tical procedure as used for sertraline.

B.4. Fluoxetine HCL (Prozac).
(1) Effects: All effect data were drawn from Hieronymus et al. (2015) table 2, which includes

multiple fluoxetine studies. Means and standard deviations were computed using an iden-
tical procedure as used for sertraline.

B.5. Escitalopram Oxal (Lexapro).
(1) Effects: All effect data were drawn from Llorca et al. (2005), table 3. The mean effect was

taken to be the difference in Hamilton-17 score between baseline and LOCF (Last Observa-
tion Carried Forward). Like for sertraline, we take advantage of the assumed independence
between the baseline score and effect, and compute the standard deviation of the effect as:

σeffect =
√
σ2
LOCF − σ2

baseline

B.6. Trazodone HCL (Oleptro).
(1) Effects: The mean effect was drawn from Kasper (1995) table 3, line 3 (Belgium). The

effect is expressed as the mean change in HAMD-17 score for a single study. No data was
found on the standard deviation of the effect for trazodone. However, Van Moffaert et al.
(1995) claim that the standard deviation of mirtazapine’s effect is about 20% lower than
that for trazodone. Thus, we let σtrazeffect = σmirteffect, where σmirteffect is defined below.

B.7. Duloxetine HCL (Cymbalta).
(1) Effects: The mean effect was drawn fom Detke et al. (2002), table 2. The effect is expressed

as the mean change in HAMD-17 for a single study. The standard deviation of the effect
was drawn from page 227 of Goldstein et al. (2002) which doesn’t provide the standard
deviation derived from their data but rather an “assumed” standard deviation of 7. We can
hope that this standard deviation was informed by their data, but are not sure of this.
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B.8. Bupropion HCL XL (Wellbutrin XL).
(1) Effects: No papers were found measuring the direct effect and standard deviation for

bupropion. However, Maneeton et al. (2013)claims that these would be approximately the
same as those for venlafaxine. For this reason, the effect and standard deviation of the
effect of bupropion was made identical to that for venlafaxine (see below).

B.9. Amitriptyline HCL (Elavil).
(1) Effects: All effect data was drawn from Kasper (1995) page 30 (within the text). These

data came from a single study of both amitriptyline and mirtazapine. You will notice they
provide data for both “mean change from baseline” and “reductions at the endpoint”. The
data pulled are those corresponding to reductions at the endpoint.

B.10. Venlafaxine (Effexor).
(1) Effects: All effect data was drawn from table 1 of Kirsch et al. (2008), which includes

several different of venlafaxine. In order to obtain a single figure for the mean and standard
deviation of change, the average was taken over the relevant studies presented in the table.
Note that the d denotes the standard deviation.

B.11. Mirtazapine (Remeron).
(1) Effects: All effect data was drawn from Kasper (1995), page 27 (within the text). These

data came from an analysis of pooled data of mirtazapine trials.

B.12. Paroxetine (Paxil).
(1) Effects: All effect data were drawn from Hieronymus et al. (2015) table 2, which includes

multiple paroxetine studies. Means and standard deviations were computed using the same
procedure as for sertraline. Note that these paroxetine studies include a variety of different
dosages.

B.13. Placebo.
(1) Effects: Most of the studies we have come across provide data on the effect of placebos

on patients with major depressive disorder. We have defined our “placebo” effects and
standard deviations by taking the average over the data provided in Hieronymus et al.,
which provides data on 18 different placebo-controlled trials. To compute the mean and
standard deviation of the effect, we employ the same procedure used for sertraline, for
example (please see above).

43



Appendix C. Appendix Tables

Table C1. Share of all antidepressant prescriptions, 2006 and 2014

Drug Class Molecule Product
2006 2014 2006 2014 2006 2014

SSRI 54.40 53.90
Sertraline 14.02 14.63 4.69 14.56
(Zoloft) 9.33 0.07
Citalopram 6.17 12.83 5.98 12.81
(Celexa) 0.19 0.02
Fluoxetine 11.08 10.57 10.69 10.53
(Prozac) 0.39 0.04
Escitalopram 13.05 9.68 .. 9.50
(Lexapro) 13.05 0.18
Paroxetine 1.69 5.33 .. 5.28
(Paxil) 1.78 0.04
SNRI 13.50 15.04
Venlafaxine 9.14 7.09 0.18 6.99
(Effexor) 8.96 0.10
Duloxetine 4.33 6.84 .. 6.36
(Cymbalta) 4.33 0.48
NDRI 11.45 10.46
Bupropion 11.45 10.46 2.88 10.29
(Wellbutrin) 6.58 0.15
SARI 7.12 9.35
Trazadone 7.12 9.35 7.11 9.35
Tricyclic 10.69 8.14
Amitriptyline 6.72 5.18 6.62 5.15
(Elavil) 0.00 0.00
Tetracyclic 2.44 2.84
Mirtazapine 2.36 2.82 2.36 2.82
(Remeron) 0.02 0.08 0.02
Total 99.60 99.73 87.13 94.78 87.18 94.73
Note: Brand names in parentheses. E.g. Zoloft is the brand name for the generic Sertraline. Each molecule
generally has a brand and a generic product.
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Table C2. Illustration of drug transitions and violations of the American Psychiatric Association Guidelines
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