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Abstract

This paper studies the estimation of characteristic-based quantile factor models where

the factor loadings are unknown functions of observed individual characteristics while the

idiosyncratic error terms are subject to conditional quantile restrictions. We propose a three-

stage estimation procedure that is easily implementable in practice and has nice properties.

The convergence rates, the limiting distributions of the estimated factors and loading func-

tions, and a consistent selection criterion for the number of factors at each quantile are

derived under general conditions. The proposed estimation methodology is shown to work

satisfactorily when: (i) the idiosyncratic errors have heavy tails, (ii) the time dimension

of the panel dataset is not large, and (iii) the number of factors exceeds the number of

characteristics. Finite sample simulations and an empirical application aimed at estimating

the loading functions of the daily returns of a large panel of S&P500 index securities help

illustrate these properties.
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1 Introduction

The generalization of the classical factor analysis has taken place through two main approaches.

On the one hand, there has been the development of approximate factor models (AFM) where

factors are assumed to be unobserved and therefore need to be jointly estimated with their

loadings.1 As a result, AFM suffer from a generic identification problem since both sets of

objects can only be identified up to a rotation matrix. On the other hand, a growing literature

has emerged in finance trying to explain the cross-sectional co-movements of stock returns on

the basis of observable factors. In this setup, the factors are usually approximated using the

differences between the returns of portfolios sorted by some observed characteristics, e.g. market

capitalization and book-to-market ratio. This popular approach, pioneered by Fama and French

(1993), has been extended to include some additional factors, such as momentum, profitability

and investment, together with the well-known Fama-French three factors (see Fama and French

(2015)).

Both approaches have pros and cons. In effect, while the latent factors approach relies on

easily implementable estimation methods, such as the principal component analysis (PCA), it

is often criticized for the lack of interpretation of the estimated factors. Conversely, the Fama-

French approach turns out to be unambiguous about this interpretation; yet, their method of

constructing the factor proxies quickly becomes unreliable for typical sample sizes as the number

of factors grows (see Connor and Linton (2007)).

A setup that tries to take advantage of both approaches while avoiding their shortcomings is

the so-called characteristic-based factor models (CFM) introduced by Connor and Linton (2007)

and later extended by Connor, Hagmann, and Linton (2012). According to this framework, the

factor loadings are assumed to be smooth nonlinear functions of some observed characteristics of

the different units, while the factors remain unobserved, as in AFM. Thereby, the latent factors

in CFM can be easily estimated even when the number of factors is not small, whereas their

interpretation hinges on the choice of the observed characteristics. Subsequently, Fan, Liao, and

Wang (2016) have generalized this framework by allowing both the number of factors to differ

from the number of observed characteristics and the factor loadings not to be fully explained

by those characteristics. For the estimation of this kind of models, these authors introduced

a new methodology called projected principal component analysis (PPCA), showing that such

estimators exhibit faster rates of convergence than the conventional PCA estimators for AFM.

The main goal in this paper is to extend the analysis of Connor et al. (2012) and Fan

et al. (2016) to a new class of factor models labeled characteristic-based quantile factor models

1AFM were first proposed by Chamberlain and Rothschild (1983) to characterize the co-movement of a large
set of financial asset returns. The estimation and inference theory of these models and their subsequent extensions
have been developed, inter alia, by Stock and Watson (2002), Bai and Ng (2002), and Bai (2003); see Fan, Li,
and Liao (2021) for a recent overview of this line of research.
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(CQFM). In relation to CFM, the main difference is that the idiosyncratic errors in CQFM

are subject to quantile restrictions instead of mean restrictions. Moreover, in CQFM the latent

factors, the loading functions, and the number of factors are all allowed to vary across quantiles,

providing in this fashion a more complete picture of how the joint distributions of many asset

returns are driven by a few common risk factors.

In particular, our main contribution here is to provide a new three-stage estimation method

for CQFM, labeled quantile-projected principal components analysis (QPPCA), which is com-

putationally simpler than the other available estimation procedures for this kind of factor models.

This procedure works as follows. First, at each time period, the outcomes (e.g. stock returns)

are projected onto the space of the observed characteristics by means of sieve quantile regres-

sions. Second, using the fitted values from the first step, their factors and loadings are estimated

by means of PCA. Finally, the whole loading functions are retrieved by projecting the estimated

loadings onto the basis of the sieve space. In addition, we propose a novel estimator for the

number of factors at each quantile which is shown to perform satisfactorily for reasonable sample

sizes.

The rates of convergence and the limiting distributions of the estimated factors and loading

functions in QPPCA are derived under very general conditions, whereas the estimator for the

number of factors at each quantile is also shown to be consistent. In particular, a relevant

contribution of QPPCA to this literature is that all its asymptotic properties are obtained

without assuming any moment restrictions on the idiosyncratic errors. Thus, it becomes a nice

tool to analyze data from financial markets where the error distributions are known to have

heavy tails. Moreover, we only require the number of cross section observations (denoted as n)

to diverge in our asymptotic analysis, while the number of time series observations (denoted as

T ) can be taken to be either fixed or diverging.

It is noteworthy that the QPPCA estimation method exhibits several similarities with the

PPCA approach of Fan et al. (2016). Yet, the main difference is that, given our less restrictive

assumption on the error terms, sieve quantile regressions are implemented in the first step to

project the observed outcomes, whereas Fan et al. (2016) uses sieve least square regressions.

Thereby, QPPCA estimation turns out to be more robust to heavy tails and outliers, while

the consistency of the PPCA estimators requires much stronger moment restrictions on the

disturbance terms. However, the robustness of QPPCA estimators entails two potential costs:

(i) the average convergence rate of the estimated factors is generally slower than that of the

PPCA estimator, unless the strong assumption that the idiosyncratic errors are independent of

the observed characteristics is made; and (ii) unlike PPCA, it has to be assumed that the factor

loadings are fully explained by the observed characteristics (see below).

A closely related paper to ours is Ma, Linton, and Gao (2021), which also addresses the

estimation and inference for CQFM by considering a semiparametric quantile factor analysis

3



(SQFA) approach where observed characteristics are potentially allowed to affect stock returns

in a nonlinear fashion. Thus, as QPPCA, SQFA extends Connor et al. (2012) to the quantile

restriction case. Yet, several important differences exist between the two approaches. First,

as in Connor and Linton (2007) and Connor et al. (2012), SQFA assumes that the number of

factors is known and is equal to the number of observed characteristics. In contrast, QPPCA

does not only allow the number of factors (which can vary across quantiles) to be different from

the number of characteristics, but also implies that the number of factors at each quantile can

be consistently estimated from the data. Second, while SQFA’s initial estimator of the quantile

loading functions also relies on sieve quantile regressions, its subsequent steps are based on an

iterative minimization algorithm to jointly estimate the factors and loadings. This algorithm can

be computationally costly. This potential problem is easily solved with the QPPCA methodology

since its second and third steps are based on PCA, which are much easier to compute. Third, the

asymptotic results of Ma et al. (2021) are obtained as n, T → ∞, while all our results hold either

T is fixed or T → ∞ as n → ∞. Additionally, there are some differences in the assumptions

imposed in these two approaches, which will be further discussed in the next sections, once the

main theoretical results are presented.

Next, it is important to highlight that the CQFM can be viewed as closely related to the

quantile factor models (QFM) recently proposed by Chen, Dolado, and Gonzalo (2021) to gen-

eralize AFM to quantile regressions. In effect, while no restrictions on the factor loadings are

imposed in QFM (except for a standard rank condition), the loadings in CQFM are modeled as

unknown functions of some observed characteristics to help interpret the latent factors though,

like in SQFA, it also entails the risk of misspecification in the choice of the relevant charac-

teristics. Furthermore, in relation to the quantile factor analysis (QFA) estimators proposed

by Chen et al. (2021), an additional advantage of the CQFM setup is that the model can be

consistently estimated even when T is fixed, while the QFA estimators are only consistent when

both n and T go to infinity.

Lastly, we provide an empirical application of the proposed estimators to analyze the behavior

of the risk factors and their loadings in a panel dataset of excess stock returns that has been used

in other studies. Our main finding is that the use of QPPCA allows for uncovering substantial

variations of the estimated loading functions across different quantiles which cannot be obtained

using PPCA.

The outline of the rest of the paper is as follows. Section 2 introduces the model and the

estimators. Section 3 derives the asymptotic properties of the proposed estimators and presents

a novel consistent estimator of the number of factors at each quantile. Section 4 provides several

Monte Carlo simulation results for finite samples. Section 5 is devoted to an empirical application

of the proposed estimators. Finally, Section 6 concludes. An online appendix gathers detailed

proofs of the theorems.
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Notations: For any matrix C, ∥C∥ and ∥C∥S denote the Frobenius norm and the spectral

norm of C, respectively; λmin and λmax denote the minimum and maximum eigenvalues of C,

respectively, when the all eigenvalues are real; and C > 0 signifies that C is a positive definite

matrix. For two sequences of positive constants {a1, . . . , an, . . .} and {b1, . . . , bn, . . .}, an ≍ bn

means that an/bn is bounded below and above for all large n. The symbol ≲ means that the left

side is bounded by a positive constant times the right side. Finally, for a random vector (Y,X),

Qτ [Y |X = x] denotes the τ -quantile of Y given X = x.

Acronyms: Given the large number of acronyms used throughout the paper, we repeat them

here (in the same order as they appear in the main text) to facilitate the reading of the pa-

per: AFM (approximate factor model), CFM (characteristics-based factor model), PPCA

(projected principal component analysis), CQFM (characteristics-based quantile factor model),

QPPCA (quantile-projected principal component analysis), SQFA (semiparametric quantile

factor analysis), QFM (quantile factor model), and QFA (quantile factor analysis).

2 Model and Estimators

2.1 Model

For a panel of observed data {yit}1≤i≤n,1≤t≤T , Chen et al. (2021) consider the following quantile

factor model (QFM):

yit = λ′
i(τ)ft(τ) + uit(τ), τ ∈ (0, 1), (1)

where λi(τ),ft(τ) ∈ RR are quantile-dependent unobserved quantile factor loadings and quantile

factors, respectively, R is the number of factors at quantile τ , and uit(τ) is the idiosyncratic

error satisfying Qτ [uit(τ)|λi(τ),ft(τ)] = 0.2

Our focus in this paper is on the CQFM model considered by Ma et al. (2021), which can be

viewed as nesting the special case of the QFM in (1) where λi(τ) are unrestricted. In particular,

let us assume the existence of a vector of observed characteristics xi = (xi1, xi2, .., xiD) ∈ RD

for unit i such that

λi(τ) = gτ (xi), (2)

where gτ (·) : RD 7→ RR is a vector of unknown functions for each τ . As in Connor and Linton

(2007), Connor et al. (2012) and Fan et al. (2016), we suppose that the rth element of gτ (xi) is

given by the following additive function

gτ,r(xi) =

D∑
d=1

gτ,rd(xid),

2Note that the dependence of R on τ is suppressed to ease the notations.
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where gτ,r1, . . . , gτ,rD are unknown functions. As in the related literature, it is assumed that

gτ,r is time-invariant so that the loadings capture the cross-sectional heterogeneity only. As Fan

et al. (2016) argued, such a specification is not stringent since in many factor-model applications

to stationary time series, the analysis is carried out within each fixed time window with either

a fixed or slowly-growing T . Yet, even if there are individual characteristics that are time-

variant, like e.g. firm size or firm age, following these authors, we expect the conclusions in the

current paper to remain valid if some smoothness assumptions are added for the time-varying

components of those covariates.

Let Y be the n× T matrix of yit, Fτ be the T ×R matrix of ft(τ), X be the n×D matrix

of xi, Gτ (X) be the n × R matrix of gτ (xi), Uτ be the n × T matrix of uit(τ). Then, models

(1) and (2) can be rewritten in compact matrix form as:

Y = Gτ (X)F ′
τ +Uτ . (3)

As already mentioned, the above setup is more general than those considered in the models

of Connor et al. (2012) and Ma et al. (2021). In the latter, the dimension of the vector of

characteristics is required to be equal to the number of factors (D = R), while each of the loading

functions is assumed to be linked to only one of the observed characteristics, i.e., gτ,r(xi) =

gτ,r(xir) for r = 1, . . . , R. Note that these assumptions facilitate the interpretation of the

estimated factors, e.g. the first estimated factor would be the value factor, the second one would

be the momentum factor, and so on. However, both conditions also could be restrictive in other

setups. For example, if yit represents the profit flow of firm i at time t and there are two factors

capturing, say, a monetary shock and a fiscal shock, then it seems more reasonable to allow

for dependence of the response of the firm’s profit to the macro shocks on a wide range of firm

characteristics — such as size, leverage, growth, etc. — that exceeds the number of factors.

Moreover, a drawback of the two above-mentioned approaches is that they are more difficult to

estimate and therefore require algorithms involving multiple iterations, particularly when the

number of characteristics is large (say there are tens of characteristics, then there will be tens of

factors). In contrast, in our setup, it is potentially easier to generalize CQFM to allow for high

dimensional characteristics since the number of factors can be much smaller than the number of

characteristics. Lastly, it should be noted that in the previous estimation methods, one needs

to assume that the number of factors R is a priori known, while in this paper we will propose a

method that consistently estimates R from the data at each quantile (see Section 3.3 below).

Relative to the semiparametric factor models considered by Fan et al. (2016), the most

salient difference is that the idiosyncratic errors in CQFM are subject to conditional quantile

restrictions, rather than to conditional mean restrictions. From this perspective, as pointed out

in Chen et al. (2021), the QFM framework allows to recover different factor structures (including

the factors, the loadings, and the number of factors) across different quantiles, even when the

6



distribution of the idiosyncratic errors exhibits heavy tails. Hence, these features make CQFM

a useful tool to analyze the co-movement of the financial market variables, where the correlation

of the tail risks between different assets becomes the main object of interest. Furthermore, a

relevant extension of Fan et al. (2016) with respect to Connor et al. (2012) is that the factor

loadings are allowed to be functions of other unobserved random variables, besides the set of

observed characteristics. However, allowing for this more general case in the context of QFM

would be very challenging. To see this, assume that

λi(τ) = gτ (xi) + γi,

where γi is unobserved and independent of xi. Then model (1) can be written as

yit = gτ (xi)
′ft(τ) + ũit(τ) where ũit(τ) = uit(τ) + γ ′

ift(τ).

The above-mentioned model can be viewed as a CQFM with measurement errors, where the

new error terms ũit(τ) no longer satisfy the conditional quantile restrictions, even when xi and

γi are independent. The insight is that imposing quantile conditional restrictions for the two

elements of ũit(τ) does not imply that this conditional restriction should hold for their sum.

By contrast, if conditional expectation were applied, as in AFM, both error terms would have

zero means allowing the application of PPCA. In fact, dealing with measurement errors is far

from being a trivial issue even in standard quantile regressions (see e.g. Hausman, Liu, Luo,

and Palmer (2021)). Thus, in what follows, the analysis will be restricted to the case where the

factor loadings are fully explained by the observed characteristics, as in Ma et al. (2021), but

allowing each factor loading to depend on a host of observable characteristics instead of just a

single one. Several data generating processes (DGPs) discussed in the Monte Carlo simulations

reported in Section 4 provide examples of CQFM models to be estimated by QPPCA.

2.2 Estimators

To simplify the notations even further, in the rest of the paper we suppress the τ -subscripts in

the model and use g(),G(·),F ,U instead of gτ (·),Gτ (·),Fτ ,Uτ .

Write θ0t(xi) = g(xi)
′ft =

∑R
r=1 gr(xi)ftr =

∑R
r=1(

∑D
d=1 grd(xid))ftr. Let Θ be a space of

continuous functions such that θ0t ∈ Θ for all t = 1, . . . , T , while {Θn} is a sequence of sieve

spaces approximating Θ. In particular, let us consider the following finite dimensional linear

spaces:

Θn =

h : X 7→ R, h(x) =

D∑
d=1

kn∑
j=1

ajdϕj(xd) : (a11, . . . , ajd, . . . , aknD) ∈ RDkn

 ,
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where X ⊂ RD is the support of xi, and ϕ1, . . . , ϕkn is a set of continuous basis functions. Write

ϕkn(xi)︸ ︷︷ ︸
Dkn×1

= [ϕ1(xi1), . . . , ϕkn(xi1), . . . ϕ1(xid), . . . , ϕkn(xid), . . . , ϕ1(xiD), . . . , ϕkn(xiD)]
′ .

Suppose that for r = 1, . . . , R, there exists b01, . . . , b0R ∈ RDkn such that for some constant

α > 0,

max
1≤r≤R

sup
x∈X

∣∣gr(x)− b′0rϕkn(x)
∣∣ = O(k−α

n ). (4)

Then, for B0 = (b01, . . . , b0R) ∈ RDkn×R, a0t = B0ft and πnθ0t(·) = a′
0tϕkn(·), we have

πnθ0t ∈ Θn for all t and

max
1≤t≤T

sup
x∈X

|πnθ0t(x)− θ0t(x)| = O(k−α
n ). (5)

Once the definitions above have been established, the next stage is to introduce our QPPCA

estimation method which consists of the following three steps.

Step 1: Obtain the sieve estimator of θ0t. Let ρτ (u) = (τ − 1{u ≤ 0})u be the check function,

and define l(θ, yit,xi) = ρτ (yit − θ(xi))− ρτ (yit − θ0t(xi)), Ln(θ) = n−1
∑n

i=1 l(θ, yit,xi). Then

the sieve estimator θ̂nt is defined by

Ln(θ̂nt) ≤ inf
θ∈Θn

Ln(θ).

In practice, θ̂nt can be obtained by a simple parametric quantile regression as follows:

ât = argmin
a∈RDkn

N∑
i=1

ρτ
(
yit − a′ϕkn(xi)

)
and θ̂nt(·) = â′

tϕkn(·).

Step 2: Write ŷit = θ̂nt(xi) = â′
tϕkn(xi) and let Ŷ be the n × T matrix of ŷit. Then, the

estimator of F , denoted as F̂ , is the matrix of eigenvectors (multiplied by
√
T ) associated with

R largest eigenvalues of the T × T matrix Ŷ ′Ŷ . Moreover, the estimator of the characteristics-

based loading matrix G(X) is given by Ĝ(X) = Ŷ F̂ /T . It is well known that these estimators

are the ones that minimize the objective function: LnT (G(X),F ) = ∥Ŷ −G(X)′F ∥2, subject
to the standard normalizations, namely, F ′F /T = IR and G(X)′G(X)/n is diagonal (see Stock

and Watson (2002)).3

Step 3: Estimate the factor loading functions: gr(·) for r = 1, . . . , R. Let A0 = (a01, . . . ,a0T )

and Â = (â01, . . . , â0T ). Intuitively, Â ≈ A0 = B0F
′ ≈ B0F̂

′, as a result of which B can be

3Note, however, that the estimator is invariant to the rotation transformations of the sieve bases.
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simply estimated as

B̂ = ÂF̂ /T. (6)

The estimator of g(x) for any x ∈ X is given by ĝ(x)′ = ϕkn(x)
′B̂.

Remark 1. The basic idea of the projections is to smooth the observations {yit}1≤i≤n for each

given t against its associated covariates, as in step 1, to then compute the factors of the var-cov

matrix of the projections in step 2; finally using the estimated factors and the estimates of the

sieve functions in step 1, the loading functions are easily obtained in step 3. The main dif-

ference between this three-stage estimation method and the PPCA estimating approach of Fan

et al. (2016) is how we project yt onto the space of X in the first step, namely, how a01, . . . ,a0T

are estimated. The use of sieve quantile regressions instead of the least squares projections is a

natural choice given that the idiosyncratic errors in CQFM are subject to conditional quantile

restrictions. When the distributions of the errors are symmetric around 0, the QPPCA estima-

tors at τ = 0.5 can be viewed as a robust version of the PPCA estimators since the consistency

of the QPPCA estimators does not rely on moment restrictions of the errors (see Theorem 1

below).

Remark 2. The SQFA estimation method advocated by Ma et al. (2021) chooses B and F in

an iterative fashion to minimize the following objective function:

LnT (B,F ) =

n∑
i=1

T∑
t=1

ρτ (yit − ϕkn(xi)
′Bft),

while the quantile factor analysis (QFA) proposed by Chen et al. (2021) for QFM relies on a

similar approach which estimates the factor loadings G(X) and F jointly. Accordingly, both

SQFA and QFA require n and T go to infinity in order to establish the consistency of the

estimators. By contrast, as will be shown in the next section, the consistency of the QPPCA

estimators can be established either when T is fixed or T goes to infinity along with n.

3 Asymptotic Properties of the Estimators

In this section, we derive the rates of convergence and the asymptotic distributions of the

QPPCA estimators proposed in the previous section. To simplify the discussion, the number of

factors is taken to be known in the first two subsections while this assumption is relaxed in the

last subsection, where a consistent estimator of R is introduced.

As in Chen et al. (2021) and Ma et al. (2021), the quantile factors are treated as non-

random constants in the asymptotic analysis. Hence, the conditional quantile restrictions on
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the idiosyncratic errors imply that

P [uit ≤ 0|xi = x] = τ for any x ∈ X . (7)

Alternatively, all the assumptions and results to be presented below could be understood as

being conditional on the realizations of the factors.

Lastly, it should be noted that all the results to be presented below hold either when: (i) T is

fixed and n→ ∞, or (ii) n, T → ∞. The first case is also called the high-dimension-low-sample-

size setup in the statistics literature (see Shen, Shen, and Marron (2013) and Jung and Marron

(2009)). One of the main insights of Fan et al. (2016) is that dimensionality is a blessing rather

than a curse in the context of CFM, implying that their PPCA estimators are consistent even

when T is fixed. Our results below extend the finite-T -consistency results of Fan et al. (2016)

to CQFM.

3.1 Rates of convergence

Suppose that the observed data {yit} are generated by (3) and that {uit} satisfy (7). Let

εn =
√
kn/n ∨ k−α

n and εnT =
√
lnT ∨ 1 · εn.

For any θ1, θ2 ∈ Θ, define the pseudo-metric d(θ1, θ2) ≡
√

E (θ1(xi)− θ2(xi))
2. The following

set of conditions are required to establish the uniform rate of convergence of θ̂n1, . . . , θ̂nT , which

is a crucial result to prove the other theorems.

Assumption 1. Let M be a generic bounded constant.

(i) Define zi = (ui1, . . . , uiT ,xi). Then, z1, . . . ,zn are i.i.d. Moreover, the distributions of

(ui1,xi), . . . , (uiT ,xi) are identical for each i.

(ii) Equation (4) holds for some α ≥ 1.

(iii) X ⊂ RD is bounded, and supθ∈Θ supx∈X |θ(x)| < M . ∥ft∥ < M for all t = 1, . . . , T .

(iv) The conditional density of uit given xi = x, denoted as f(·|x), satisfies: 0 < infX f(0|x) ≤
supX f(0|x) <∞ and supX |f(z|x)− f(0|x)| → 0 as |z| → 0.

(v) As n→ ∞, kn → ∞ and εnT → 0.

Although, in principle, Assumption 1(i) is stronger than those in Fan et al. (2016) and Ma

et al. (2021), it can be relaxed to allow for weak cross-sectional dependence — see Remark 3

below for the details. Assumption 1(ii) is a general condition on the sieve approximations that

can be easily verified using more primitive conditions. For instance, it holds if Θ is an α−smooth

Hölder space (see Chen (2007) for further examples). Assumption 1(iii) and Assumption 1(iv)

are also standard in sieve quantile regressions, noting that the last assumption imposes very

mild restrictions on the size of T when it goes to infinity jointly with n.
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Proposition 1. Under Assumption 1, when either T is fixed or T → ∞ as n → ∞, it holds

that max1≤t≤T d(θ̂nt, θ0t) = OP (εnT ).

Remark 3. The proof of Proposition 1 is based on Corollary 1 of Chen and Shen (1998). In

particular, we show that

P
[
max

t
d(θ̂nt, θ0t) ≥ CεnT

]
≤

T∑
t=1

P
[
d(θ̂nt, θ0t) ≥ CεnT

]
≤ c1 exp

{
C2 lnT (1− c2nε

2
n)
}

for any C ≥ 1 and some constants c1, c2. Moreover, as shown in Chen and Shen (1998), the

above inequality holds when the observations are generated from a stationary uniform (ϕ-) mixing

sequence with ϕ(j) ≲ j−ζ for some ζ > 1. Thus, in line with Connor and Korajczyk (1993),

Lee and Robinson (2016) and Ma et al. (2021), one can assume the existence of a reordering of

the cross-sectional units such that their dependence can be characterized by the uniform mixing

condition mentioned above, and the conclusion of Proposition 1 will still hold.

To establish the convergence rates of the estimated factors and loading functions, some

further assumptions are required.

Assumption 2. Let M be a generic bounded constant.

(i) Let Σϕ = E[ϕkn(xi)ϕkn(xi)
′]. Then, there exist constants c1, c2 such that 0 < c1 ≤

λmin (Σϕ) ≤ λmax (Σϕ) ≤ c2 <∞ for all n.

(ii) k2n/n→ 0 as n→ ∞.

(iii) There exist a constant c > 0 such that λmin(F
′F /T ) > c for all T .

(iv) Σ̂g ≡ n−1
∑n

i=1 g(xi)g(xi)
′ P→ Σg > 0 as n→ ∞.

(v) The eigenvalues of Σg · F ′F /T are distinct.

The conditions in Assumption 2 are all standard in the literature on factor models and sieve

estimation. In particular, Assumption 2(ii) strengthens Assumption 1(v), and Assumption 2(iii)

implicitly requires that T ≥ R. In comparison, Assumption A0 of Ma et al. (2021) imposes

that lim infT→∞ |T−1
∑T

t=1 ftr| > 0 for all r = 1, . . . , R, which excludes the possibility that the

underlying time series generating F has zero mean. The following theorem gives the rates of

convergence of the estimated factors and loading functions.

Theorem 1. Let Ω̂ be the diagonal matrix whose elements are the eigenvalues of Ŷ ′Ŷ /(nT ),

and define Ĥ = Σ̂g(F
′F̂ /T )Ω̂−1. Then, under Assumptions 1 and 2, the following results hold

either when T is fixed or T → ∞ as n→ ∞,:

(i) ∥F̂ − FĤ∥/
√
T = OP (εnT ).

(ii) ∥Ĝ(X)−G(X)(Ĥ ′)−1∥/
√
n = OP (εnT ).

(iii) supx∈X ∥ĝ(x)− Ĥ−1g(x)∥ = OP (
√
knεnT ).
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A few remarks on this result are relevant. First, it is worth highlighting that Theorem 1 (and

Theorem 2 below) is obtained without imposing any restrictions on the time-series dependence

of the idiosyncratic errors, while both Fan et al. (2016) and Ma et al. (2021) impose some

kind of weak-time-series-dependence conditions. Second, while our setup does not require any

moment restrictions on uit, Assumption 3.4 of Fan et al. (2016) needs the error terms to have

exponential tails. Third, the price to pay for these nice properties is that the convergence rates

given in Theorem 1 are generally slower than those of Fan et al. (2016), mainly due to our use

of sieve quantile estimators rather than sieve least square estimators. In fact, in the proof of

Theorem 1, we only use the uniform convergence rate of ât (see Lemma 1 in the Appendix). Yet,

by exploring the Bahadur representation of ât, the convergence rate of the estimated loading

functions can be improved when T is large (see Theorem 3 below), whilst the convergence rate

of the estimated factors can be greatly improved even when T is fixed if the following extra

assumptions are imposed.

Assumption 3. Let L be a generic bounded constant and let f(·) denote the p.d.f. of uit.

(i) For each i, xi is independent of (ui1, . . . , uiT ).

(ii) |f(c)− f(0)| ≤ L|c| for any c in a neighborhood of 0.

(iii) Equation (4) holds for some α ≥ 3.

Assumption 3(i) essentially requires that the observed characteristics only affect the location

but not the scale of the distributions of yit. In such a case, the leading term in the Bahadur

representation of ât has a similar structure to the least square estimators (see Lemma 2 in the

Appendix). Thus, this assumption implies an improved convergence rate of F̂ which happens

to be as fast as that of the PPCA estimators (see Theorem 4.1 of Fan et al. (2016)).

Theorem 2. Let ηnT =

√
ln(k

−1/4
n ε

−1/2
nT ) · k5/4n ε

1/2
nT n

−1/2. Under Assumptions 1 to 3, we have

∥F̂ − FĤ∥/
√
T = OP

(
n−1/2 ∨ k−α

n ∨ ηnT ∨ ε2nT
)
.

Moreover, if T ≍ nγ1 and kn ≍ n1/(6+γ2) for some γ1 ≥ 0 and γ2 > 0, then

∥F̂ − FĤ∥/
√
T = OP

(
n−1/2 ∨ k−α

n

)
.

Remark 4. The term ηnT in Theorem 2 represents the higher-order terms in the Bahadur

representation of ât. When α is large, ηnT is approximately equal to k
3/2
n n−3/4. Note that this

slightly unusual expression of ηnT is mainly due to the non-smoothness of the check function.

Indeed, similar terms can be found in Theorem 2 of Horowitz and Lee (2005), Theorem 3.2 of

Kato et al. (2012) and Theorem 2 of Ma et al. (2021).
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3.2 Asymptotic distribution

Define Σfϕ = E[f(0|xi)ϕkn(xi)ϕkn(xi)
′] and σ2kn = ϕ′

kn
(x)Σ−1

fϕ ΣϕΣ
−1
fϕ ϕkn(x).

Assumption 4. Let L be a generic bounded constant.

(i) ui1, . . . , uiT are independent conditional on xi.

(ii) |f(c|x)− f(0|x)| ≤ L|c| for any c in a neighborhood of 0 and any x ∈ X .

(iii) There exist constants c1, c2 such that 0 < c1 ≤ λmin(Σfϕ) ≤ λmax(Σfϕ) ≤ c2 <∞ for all kn.

(iv) (nT )1/2k
1/2−α
n σ−1

kn
= o(1) and (nT )1/2k

1/2
n ηnTσ

−1
kn

= o(1).

Assumption 4(i) is adopted for simplicity, though it could be replaced by β−mixing condi-

tions at the cost of getting more complex asymptotic covariance matrices. When σkn ≍ k
1/2
n

and T is fixed, Assumption 4(iv) essentially requires that n1/2k−α
n = o(1) and n1/2ηnT = o(1),

or k6n ≪ n ≪ k2αn . As a result, we need (4) to hold with α > 3. The remaining conditions

in Assumption 4 are standard — see, e.g. Assumptions 3 and 5 of Horowitz and Lee (2005).

We are now in the position of establishing the asymptotic distribution of the estimated loading

functions.

Theorem 3. Under Assumptions 1, 2, and 4, it holds that for any x ∈ X

Σ
−1/2
T,τ (Ĥ ′)−1 ·

√
nT

σkn

(
ĝ(x)− (F ′F̂ /T )′g(x)

)
d→ N(0, IR),

where ΣT,τ = τ(1− τ)(F ′F /T ).

The asymptotic distribution of F̂ is more difficult to derive, especially when n and T go to

infinity simultaneously. For this reason, instead of focusing on F̂ , let us consider the following

updated estimator for the factors:

F̃ = Ŷ ′Ĝ(X) · (Ĝ(X)′Ĝ(X))−1.

In addition, let H̃ = (G(X)′Ĝ(X)/n)(Ĝ(X)′Ĝ(X)/n)−1 and

Ξτ = τ(1− τ) ·Σ−1
g E[g(xi)ϕkn(xi)

′]Σ−1
fϕ ΣϕΣ

−1
fϕ E[ϕkn(xi)g(xi)

′]Σ−1
g .

Then, the following additional assumption is needed to derive the asymptotic distribution of f̃t.

Assumption 5. Conditions (i) to (iii) of Assumption 4 hold and n1/2k−α
n /∥Ξτ∥1/2 = o(1),

n1/2ηnT /∥Ξτ∥1/2 = o(1), εnT
√
kn = o(1).

Theorem 4. Under Assumptions 1, 2, and 5, it holds for all t = 1, . . . , T ,

Ξ−1/2
τ (Ĥ ′)−1√n(f̃t − H̃ ′ft)

d→ N(0, IR).
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When ∥Ξτ∥ ≍ kn, the convergence rate of f̃t is OP (
√
n/kn), and Assumption 5 requires that

n1/2k
−α−1/2
n = o(1) and n1/2ηnTk

−1/2
n = o(1), or k4n ≪ n ≪ k2α+1

n . As a result, we need (4) to

hold with α ≥ 2. Alternatively, if Assumption 3(i) holds, it can be shown that

∥Ξτ − τ(1− τ) ·Σ−1
g · f−2(0)∥ = O(k−α

n ).

In this case, the convergence rate of f̃t is
√
n for each t.

Remark 5. As in Proposition 1 of Bai (2003), it can be shown that Ĥ, H̃ and F ′F̂ /T all

converge in probability to some positive definite matrices as n, T → ∞. In particular, if F ′F /T =

IR and Σ̂g is diagonal, the probability limits of Ĥ, H̃ and F ′F̂ /T are all equal to IR.

Remark 6. Note that both Theorems 3 and 4 are fulfilled when T is fixed as well as when

T → ∞ as n→ ∞. In the latter case, if n ≍ T , Chen et al. (2021) show that the estimators of

the quantile factors are
√
n-consistent and asymptotically normal under more general conditions.

Thus, whenever T is as large as n and the quantile factors are the main objects of interest,

the estimators of Chen et al. (2021) should be preferable. However, if T is small and n is

large, Theorem 4 above shows that the QPPCA estimators proposed here remain consistent and

asymptotically normal.

3.3 Estimating the number of factors

Given that Ŷ = Φ(X)Â ≈ Φ(X)A0 = Φ(X)B0F
′ ≈ G(X)F ′, the rank of Ŷ is asymptotically

equal to R. Let ρ̂1, . . . , ρ̂R̄ be the R̄ largest eigenvalues of Ŷ Ŷ ′/(nT ) in descending order. Then,

the estimator of R is given by the number of non-vanishing eigenvalues of Ŷ Ŷ ′/(nT ), i.e.

R̂ =
R̄∑

j=1

1{ρ̂j > pn}, (8)

where {pn} is a sequence of non-increasing positive constants. The following theorem provides

conditions on the threshold pn to establish the consistency of R̂ which, following Chen et al.

(2021), is denoted as the rank minimization estimator of the number of factors.

Theorem 5. Suppose that R̄ ≥ R and pn → 0, pnε
−1
nT → ∞ as n→ ∞, then under Assumptions

1 and 2, we have P [R̂ = R] → 1 as n→ ∞.

To prove Theorem 5, we show that the largest R eigenvalues of Ŷ Ŷ ′/(nT ) converge in

probability to some positive constants, while the remaining eigenvalues are all OP (εnT ). Then,

the decreasing sequence {pn} is chosen to dominate the vanishing eigenvalues in the limit. Again,

this result also holds even when T is fixed.
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In theory, the choice of pn is determined by α, which depends on the smoothness of the

unknown quantile loading functions. Thus, a conservative choice of pn can rely on assuming

that α = 1. In this case, εnT = (k
1/2
n n−1/2∨k−1

n ) lnT , and the optimal choice of kn is k∗n ≍ n1/3.

Hence, to satisfy the condition of Theorem 5, we need pn ≫ n−1/3 lnT . The following choice is

recommended in practice:

pn = d · ρ̂1/21 · n−1/4 lnT, (9)

where d is a positive constant and ρ̂
1/2
1 plays the role of a normalization factor.

Remark 7. Alternatively, to avoid the choice of the threshold sequence {pn}, use could be made

of the approach proposed by Ahn and Horenstein (2013) to estimate the number of factor by

maximizing the ratios of consecutive eigenvalues, i.e.

R̃ = argmax
j=1,...,R̄

ρ̂j
ρ̂j+1

.

This is the estimator considered by Fan et al. (2016) in the context of AFM where the error

terms are required to be sub-Gaussian. For this reason, a formal proof of the consistency of this

estimator in the context of QFM is technically challenging, being left for further research.

4 Simulations

In this section, we run a few Monte Carlo simulations to study the behavior in finite samples of

the QPPCA estimators regarding the estimation of the number of factors, the factors themselves

and their loading functions. In most cases, unless otherwise explicitly said, we suppose that

the number of characteristics is D = 5 and that all of them, {xid, d = 1, . . . , 5}, are drawn

independently from the uniform distribution: U [−1, 1].

4.1 Estimating the number of factors

Consider the following DGP:

yit =
3∑

r=1

λirftr +
(
x2i1 + x2i2 + x2i3

)
uit,

where ft1 = 1, ft2, ft3 ∼ i.i.d N(0, 1). Note that the chosen DGP is a location-scale shift model

where the scale is driven by a subset of the five characteristics. This type of heteroskedasticity

implies that the quantile loading functions exhibit variations across quantiles, unlike a pure

location-shift model where the loading functions would be the same (up to a constant) for

different quantiles.
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Let g1(x) = sin(2πx), g2(x) = sin(πx) and g3(x) = cos(πx), such that

λi1 =
∑

d=1,3,5

g1(xid), λi2 =
∑
d=1,2

g2(xid), λi3 =
∑
d=3,4

g3(xid).

As for the idiosyncratic component, uit are i.i.d. draws from three alternative distributions:

(i) the standard normal distribution, N(0, 1), (ii) the Student’s t distribution with 3 degrees

of freedom, t(3), and (iii) the standard Cauchy distribution, Cauchy(0,1). In the first-step, we

set kn = n1/3 in the quantile sieve estimation, and make use of the Chebyshev polynomials of

the second kind as the basis functions. Moreover, in order to implement the rank minimization

estimator for the number of factors in (8), the threshold pn is chosen as in (9), with d = 1/4.

First, Table 1 displays the results of the number of factors estimated with the rank mini-

mization criterion for τ ∈ {0.25, 0.5, 0.75}, T ∈ {5, 10} and n ∈ {50, 100, 200, 1000} from 1000

simulation replications. For each combination of τ , n and T , the reported results represent:

[frequency of R̂ < R; frequency of R̂ = R; frequency of R̂ > R]. Next, for comparison, Table 2

reports the corresponding results when the number of factors is estimated using the Ahn and

Horenstein (2013)’s eigen-ratio estimator discussed in Remark 7.

There are three main takeaways from these simulation results. First, both selection criteria

accurately estimate the number of factors when T is small and n is large, supporting our previous

claim about their consistency even when T is fixed. Second, when n is large (=1000), both

estimators perform well, even when the errors follow the standard Cauchy distribution. Hence,

this result also provides support for the claim that our estimator is consistent in the absence of

moment restrictions on the error terms. Third, although both estimators yield similar results

when n = 1000, the rank minimization estimator outperforms the eigen-ratio estimator when n

is not sufficiently large.

4.2 Estimating the factors

4.2.1 Comparison of QPPCA with PCA, PPCA and QFA

Following Chen et al. (2021), we consider the following DGP:

yit = λi1ft1 + λi2ft2 + (λi3ft3)uit,

where ft3 = |ht|, ft1, ft2, ht ∼ i.i.d N(0, 1). As before, let g1(x) = sin(2πx), g2(x) = sin(πx)

but now g3(x) = |cos(πx)|. The factor loading functions and the error terms are also generated

as in Subsection 4.1. Note that, in this DGP, there are two location shift factors, ft1 and ft2,

that affect the mean of yit and only one scale shift factor ft3 that affects the variance of yit.

First, we focus on the estimation of the two location factors: ft1 and ft2. Four competing
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estimation methods are considered: (i) our the proposed method with τ = 0.5 (QPPCA); (ii) the

quantile factor analysis estimator (QFA) of Chen et al. (2021) with τ = 0.5; (iii) the projection

estimator proposed by Fan et al. (2016) (PPCA); and (iv) the standard estimator of Bai and

Ng (2002) for AFM (PCA). For the first two methods, the choices of kn and the basis functions

are again the same as in Subsections 4.1 and 4.2.

Regarding the choices of n and T , two different scenarios are considered:

(i) Fix T = 10, 50 and let n increase from 50 to 500.

(ii) Fix n = 100, 200 and let T increase from 5 to 200.

For each estimation method, the number of factors (R = 2 at τ = 0.5) is assumed to be

known, and we report the average Frobenius error as a measure of fit: ∥F̂ − FĤ∥/
√
T from

1000 replications, where Ĥ represents the associated rotation matrix for each estimator.

The results for the first scenario (fixed T and increasing n) are plotted in Figure 1. As

can be inspected, for small T (T = 10), the PCA and QFA estimators perform worse than the

PPCA and QPPCA estimators when uit is either drawn from the N(0, 1) or t(3) distributions.

Moreover, when the distribution is a standard Cauchy, the QPPCA estimator performs much

better than its competitors. These findings agree again with our previous theoretical results

showing that this estimator is consistent even when T is fixed or the moments of uit do not

exist.

When T is relatively large (T = 50) and the distribution of uit has a thin tail, like a N(0, 1)

random variable, all the estimators behave similarly, as long as n ≥ 100. However, if uit follows

the t(3) distribution, the PCA estimator is subject to a much larger estimation error than

the alternative procedures. In the extreme case of the standard Cauchy distribution, the two

methods based on quantile regressions are the obvious winners, with the performances of the

QFA and QPPCA estimators being very similar insofar n ≥ 200.

The results for the second scenario (fixed n and increasing T ) are displayed in Figure 2.

The main takeaway from this simulation exercise is that the QPPCA estimator provides the

most robust approach against heavy-tailed distributions when T is small, while only the QFA

estimator performs slightly better as T increases.

Next, we proceed to estimate all the three factors jointly, paying particular attention to the re-

sults for the scale factor ft3. Since this last factor is absent when τ = 0.5, for brevity we only pro-

vide simulations for τ = 0.25, 0.75, and sample sizes where T ∈ {10, 50} and n ∈ {50, 100, 200}.
In each of these setups, the three estimated factors by the four different approaches are denoted

as F̂ τ
QPPCA, F̂

τ
QFA, F̂PPCA, F̂PCA. Subsequently, each of the true factors is regressed on these

estimated factors and the adjusted R2s are computed as a measure of goodness of fit. The whole

procedure is repeated 1000 times and the averages of the adjusted R2s are reported in Tables 3

to 5.
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Table 3 displays the results for the QPPCA estimator. As can be observed, it performs

well in estimating all the three factors. It should be noted, however, that the estimates of the

scale factor ft3 are not as good as the estimates of the two location factors, ft1, ft2, when n is

small, though the fit improves substantially as n increases. Table 4, in turn, presents the results

for the QFA estimator, whereas Table 5 presents the corresponding results for the PCA and

PPCA estimators. The main finding from Table 4 is that the QFA estimator performs poorly

in estimating the scale factor ft3 when T is small (T = 10), while it performs similarly to the

QPPCA estimator when T is relatively large (T = 50). Finally and not surprisingly, the main

conclusion from Table 5 is that both the PCA and PPCA estimators fail to capture the scale

factor ft3 in all instances since they are designed for AFM but not for QFM.

4.2.2 Comparison of QPPCA with SQFA

In the previous subsection the SQFA estimator proposed by Ma et al. (2021) was not included

in the set of comparisons since its performance is close to that of the QFA estimator whenever

the number of characteristics is larger or equal to the number of factors (D ≥ R). Yet, in this

subsection, we study how they differ when the number of characteristics is smaller than the

number of factors (D < R).

To do so, we consider the following location-scale model as the DGP:

yit = λi1ft1 + λi2ft2 + (λi3ft3)uit,

where ft3 = |ht|, ft1, ft2, ht ∼ i.i.d N(0, 1). Now, the number of characteristics is 2 and, as in the

previous simulations, all characteristics xid (i = 1, ..., n and d = 1, 2) are independently drawn

from the uniform distribution: U [−1, 1]. Let g1(x) = sin(2πx), g2(x) = sin(πx) and g3(x) =

|cos(πx)|. Moreover, let λi1 =
∑

d=1,2 g1(xid), λi2 =
∑

d=1,2 g2(xid) and λi3 =
∑

d=1,2 g3(xid).

Again, uit are generated from three different distributions discussed in Subsections 4.1 and 4.2.

For each estimator, we consider τ ∈ {0.25, 0.5, 075}, T ∈ {10, 50}, n ∈ {50, 100, 200, 500}.
Note that, when τ = 0.5, there are only two location factors because ft3 does not affect the

median of yit. By contrast, when τ = 0.25, 0.75 there will be two location factors and one scale

factor. Moreover, to simplify the analysis, R is assumed to be known. For each τ , R factors

are estimated using QPPCA. Note that the SQFA method chooses the number of factors as the

number of characteristics by default, implying that only two factors will be estimated. Moreover,

the choices of the basis functions and kn are the same as in Subsection 4.1.

As before, we proceed to regress each of the true factors on the estimated factors and compute

the adjusted R2s. The whole procedure is repeated 1000 times and the averages of the adjusted

R2s are reported in Tables 6 and 7 for the QPPCA and SQFA estimators, respectively. When

it comes to the estimation of the volatility factor, ft3, it is not surprising to check that the
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QPPCA estimator outperforms the SQFA estimator since the latter is restricted to estimating

only D = 2 factors. Thus, the main finding here is that the QPPCA estimator performs better

than the SQFA estimator in estimating the location and scale shift factors whenever the number

of factors exceeds the number of characteristics.

4.3 Estimating the loading functions

Finally, we close this section by analyzing the estimation of the quantile loading functions. To

do so, consider the following DGP:

yit = λi1ft1 + (λi2ft2)uit,

where ft2 = |gt| and ft1, gt ∼ i.i.d N(0, 1). The number of characteristics is 2 and all char-

acteristics xid (i = 1, ..., n and d = 1, 2) are independently drawn from uniform distribu-

tion: U [−1, 1]. Let g11(x) = sin(2πx), g21(x) = 0, g12(x) = sin(πx), g22(x) = cos2(πx) and

λi1 = g11(xi1) + g12(xi2), λi2 = g21(xi1) + g22(xi2). This time, uit are independently drawn

from the N(0, 1) and the t(3) distributions, excluding Cauchy. Note that this DGP involves one

location factor, f1t, as well as a single scale factor, f2t. Moreover, g11 and g12 are related to the

location factor and they are quantile-invariant, while g21 and g22 are associated with the scale

factor and they are quantile-dependent. In particular, suppose the τth quantile of uit is Qτ ,

then the true loading function is given by gτ,2d(x) = Qτ · g2d(x).

Given its better performance in the simulations above, we only consider our QPPCA esti-

mator in this simulation exercise and set n = 500, T = 10. Once again, the choices of basis

functions and kn are as in Subsection 4.1. For each distribution of the error terms, we estimate

the loading functions at τ = 0.25, 0.5, 0.75 by taking 201 equidistant points within the interval

[-1,1] and compute the estimated function values at these points. By repeating this procedure

1000 times, the lower 5% and 95% quantiles of these replications are reported at each point.

When the error term follows the N(0, 1) distribution, the estimated loading functions of the first

and second characteristics are plotted in Figures 3 and 4, respectively, while the corresponding

loading functions when the errors follow the t(3) distribution are displayed in Tables 5 an 6. In

line with our theoretical results, the main lesson to be drawn from these simulations is the good

performance of the QPPCA estimator in retrieving the true loading functions even when T is

not large.

5 Empirical Application

In this section, the QPPCA estimation method is applied to investigate the factor structure of

security returns. Following Fan et al. (2016), we use a dataset that includes information on the

19



daily returns of S&P500 index securities with complete daily closing price records from 2005 to

2013.4 The sample consists of 355 stocks, whose book value and market capitalization are drawn

from Compustat. Moreover, as is conventional in this literature, the 1-month US treasury bond

rate is used as the risk-free rate to compute the daily excess return of each stock.

Following Connor et al. (2012), Fan et al. (2016), and Ma et al. (2021), four characteristics

are considered: size, value, momentum and volatility, which are standardized to have zero means

and unit standard deviations. Similar to Fan et al. (2016), we analyze the data corresponding to

the first quarter of 2006, which includes T = 62 observations. Once again, the second Chebyshev

polynomials are used as the basis functions in the sieve regressions and kn = 4.

First, Table 8 shows the estimated number of mean factors using the eigen-ratio estimator

proposed by Fan et al. (2016) and the estimated numbers of quantile factors using the QPPCA

rank minimization estimator for τ ∈ {0.05, 0.25, 0.5, 0.75, 0.95}. The five largest eigenvalues of

Ŷ Ŷ ′ and the threshold pn are also displayed in this table. In addition, the estimated numbers

of quantile factors using the QFA rank minimization estimator are reported in the last column.

Overall, the results provide strong evidence in favor of the existence of a single location factor

and one factor at each quantile.

Second, Table 9 shows the correlation coefficients between the estimated location factors

by PPCA and the estimated quantile factors by QPPCA for the above-mentioned values of τ .

The sample means of each estimated factor are also reported in the last column. Figure 7 in

turn provides plots of these factors which exhibit different means and high correlations. As can

be inspected, the PPCA factor is highly correlated with the QPPCA factor corresponding to

τ = 0.5, but misses the factors at the more extreme quantiles.

Third, Figure 8 shows the estimated loading functions of the four characteristics using PPCA

and QPPCA at τ = 0.5 where values of each standardized covariate appears in the horizontal

axis. The fact that both methods yield similar estimated loading functions indicates that the

idiosyncratic errors of the stock returns have symmetric distributions so that the mean and the

median coincide.

Fourth, given its better performance, Figure 9 plots the estimated loading functions of the

four characteristics under consideration using QPPCA at different quantiles. In general, these

functions feature considerable variation both across the values of the characteristics and the

quantiles. A few salient findings emerge. First, the loading functions of size and volatility

seem to behave monotonically at all quantiles while, for value and momentum, they exhibit

a clear non-linear pattern, mostly looking U-shaped. By the way, the shapes of the loading

function resemble those reported by Ma et al. (2021) except for value (i.e. a value stock refers to

shares of a company that appears to trade at a lower price relative to its fundamentals, such as

dividends, earnings, or sales) which these authors find to have an inverted U-shape. Next, for all

4This dataset is downloaded from CRSP (Center for Research in Security Prices).
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characteristics, their quantile loading functions at τ = 0.25 and τ = 0.5 are very close. Lastly,

there is strong evidence that the loading functions at the tails (τ = 0.05, 0.95) have greater

curvatures than at the remaining quantiles. In sum, this empirical evidence points out that

the estimated loading functions vary substantially across different quantiles, a fact that cannot

be uncovered using the PPCA method. Yet, this is a useful finding since deviating from the

efficient market hypothesis, factors contributing to alpha generation can have different relevance

depending on the distribution of excess returns. Thus, the standard asset valuation techniques

based on CAPM and the Fama-French factors should take these features into consideration to

create a portfolio delivering excess returns over time beating the market.

Finally, it is worth highlighting that QPPCA allows estimating the conditional quantile of

excess returns Qτ [yit|xi] = gτ (xi)
′ft, yielding ŷit(τ) = â′

tϕkn(xi) as its estimator, where ât

is obtained from the cross-sectional quantile regressions in step 1 of the three-step procedure

introduced in Section 2. One could interpret ŷit(τ) as the “quantile return” which is interesting

from the perspective of empirical applications since it is idiosyncratic free, that is, much less noisy

than the realized return yit. Just as the literature on asset pricing has increasingly appreciated

the concept of “expected returns” because it is noiseless (see e.g. Elton (1999)), “quantile

returns” are also interesting on their own and could perhaps help provide a better explanation

of the distribution of returns, an issue which remains high in our research agenda.

6 Conclusions

This paper proposes a three-stage estimation method for characteristic-based quantile factor

models (CQFM). The convergence rates of the proposed estimators, labeled QPPCA, are estab-

lished, and the asymptotic distributions of the estimated factors and loading functions are de-

rived under very general conditions. Compared with the existing estimation methods of CQFM,

not only QPPCA estimators are easier to implement in practice, but also they are consistent for

fixed T as long as n goes to infinity, as well as being robust to heavy tails and outliers in the dis-

tribution of the idiosyncratic errors. Moreover, the number of quantile factors are allowed to be

different from the number of the characteristics, and this number can be consistently estimated

using a new rank-minimization estimator proposed in this paper.

Simulation results show that the proposed estimators perform satisfactorily in finite sam-

ples, especially when the number of cross-section observations is large. An application of the

estimators to a dataset consisting of individual stock returns reveals that the quantile factor

loadings are nonlinear functions of some observed characteristics and that these functions ex-

hibit considerable variations across quantiles. We conjecture that this leads to the concept of

quantile returns which generalizes the standard concept of expected returns, typically proxied by

averages of realized returns.
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The methodology associated with QPPCA is useful to derive the convergence rates and

asymptotic properties of the (average) quantile returns which remains high in our ongoing re-

search agenda. Moreover, for the tractability of the problem, it has been assumed that the

quantile factor loadings can be fully explained by the observed characteristics. Admittedly, this

is a restrictive assumption. Relaxing this assumption and allowing the factor loadings to be

functions of other unobserved characteristics is a challenging task in the context of quantile

regressions. This interesting question is also left for future research.
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A Proofs of the Main Results

Proof of Proposition 1:

Proof. For any θ ∈ Θ, define K(θ, θ0t) = E(Ln(θ)) = E[l(θ, yit,xi)]. Under Assumption 1(iv),

it can be shown that K(θ, θ0t) ≍ d(θ, θ0t)
2. For the finite-dimensional linear sieve spaces Θn, it

can be shown that Condition A.3 of Chen and Shen (1998) is satisfied with δn =
√
kn/n (see

Section 3.3 of Chen (2007)). By the definition of d and the properties of the check function, it

is easy to see that,5

sup
θ∈Θn,d(θ,θ0t)≤ε

Var [l(θ, yit,xi)] ≤ sup
θ∈Θn,d(θ,θ0t)≤ε

E [l(θ, yit,xi)]
2

≲ sup
θ∈Θn,d(θ,θ0t)≤ε

E (θ(xi)− θ0t(xi))
2 ≤ ε2.

Thus, Condition A.2 of Chen and Shen (1998) is also satisfied. By Assumption 1(iii) we

have supθ∈Θ |l(θ, yit,xi)| ≲ supθ∈Θ supX |θ(x) − θ0t(x)| < ∞. Assumption 1(ii) implies that

d(πnθ0t, θ0t) =
√
E (πnθ0t(xi)− θ0t(xi))

2 = O(k−α
n ). Therefore, it follows from Corollary 1 of

Chen and Shen (1998) that

P
[
max

t
d(θ̂nt, θ0t) ≥ CεnT

]
≤

T∑
t=1

P
[
d(θ̂nt, θ0t) ≥ CεnT

]
≤ c1 exp

{
C2 lnT (1− c2nε

2
n)
}

for any C ≥ 1. Therefore, the desired result follows from the above inequality since nε2n ≥ kn.

Lemma 1. If Assumption 1 and Assumption 2(i) hold, and εn is defined as in Assumption 1,

then:

(i) max1≤t≤T ∥ât − a0t∥ = OP (εnT );

(ii) Let V̂ ≡ Ŷ −G(X)F ′, then (nT )−1/2∥V̂ ∥ = OP (εnT ).

Proof. By Assumption 1 and Assumption 2(i),

d(θ̂nt, θ0t)
2 =

∫
X

(
θ̂nt(x)− θ0t(x)

)2
dFx(x) =

∫
X

(
θ̂nt(x)− πnθ0t(x)

)2
dFx(x) +OP (εnTk

−α
n )

= (ât − a0t)
′Σϕ(ât − a0t) +OP (εnTk

−α
n ) ≥ c1∥ât − a0t∥2 +OP (εnTk

−α
n )

where c1 > 0, and the OP (εnTk
−α
n ) in the above equation is uniform in t. It then follows from

Proposition 1 that max1≤t≤T ∥ât − a0t∥2 = OP (ε
2
nT ).

5Note that |ρτ (u1)− ρτ (u2)| ≤ 2|u1 − u2|.
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Next, note that

(nT )−1∥V̂ ∥2 ≤ 1

nT

n∑
i=1

T∑
t=1

(
θ̂nt(xi)− πnθ0t(xi)

)2
+OP (k

−2α
n )

=
1

nT

n∑
i=1

T∑
t=1

(
(ât − a0t)

′ϕkn(xi)
)2

+OP (k
−2α
n )

≤ T−1
T∑
t=1

∥ât − a0t∥2 · λmax

(
Σ̂ϕ

)
+OP (k

−2α
n )

≤ max
1≤t≤T

∥ât − a0t∥2 · λmax

(
Σ̂ϕ

)
+OP (k

−2α
n )

where Σ̂ϕ ≡ n−1
∑n

i=1ϕkn(xi)ϕkn(xi)
′. Since Assumption 1(iii) implies that supX ∥ϕkn(xi)∥ =

√
kn, similar to the proof of Theorem 1 in Newey (1997), one can show that ∥Σ̂ϕ−Σϕ∥ = oP (1)

under Assumption 2, and therefore we have λmax(Σ̂ϕ) = OP (1). This completes the proof.

Proof of Theorem 1:

Proof. Write Ŷ = G(X)F ′ + V̂ where V̂ is as defined in Lemma 1. Let ΩR be the diagonal

matrix whose elements are the eigenvalues of Σg · F ′F /T . Note that

Ŷ ′Ŷ /(nT ) = FG(X)′G(X)F ′/(nT ) + V̂ ′G(X)F ′/(nT )

+ FG(X)′V̂ /(nT ) + V̂ ′V̂ /(nT ). (A.1)

It then follows from Assumption 2(iv), Assumption 1(i) and Lemma 1 that:

∥Ŷ ′Ŷ /(nT )− FΣgF
′/T∥

≤ oP (1) + 2∥V̂ ∥/
√
nT · ∥G(X)∥/

√
n · ∥F ∥/

√
T + ∥V̂ ∥2/(nT )

= oP (1) +OP (εnT ).

By the Wielandt-Hoffman inequality, we have ∥Ω̂−Ω∥ = oP (1). It then follows from Assumption

2(iii) and 2(iv) that λmin(Ω̂) > 0 with probability approaching 1.

By the definition of F̂ , Ŷ ′Ŷ /(nT )F̂ = F̂ Ω̂, it then follows from (A.1) that

F̂ = FĤ + V̂ ′G(X)F ′F̂ /(nT )Ω̂−1 + FG(X)′V̂ F̂ /(nT )Ω̂−1 + V̂ ′V̂ /(nT )F̂ Ω̂−1. (A.2)

Thus, it follows from (A.2) and Lemma 1 that

∥F̂ − FĤ∥/
√
T ≤ 2OP (1) ·

∥V̂ ∥√
nT

· ∥F ∥√
T

· ∥F̂ ∥√
T

· ∥G(X)∥√
n

+OP (1) ·
∥F̂ ∥√
T

· ∥V̂ ∥2

nT
= OP (εnT ).
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Then the first part of Theorem 1 follows.

Next, similar to the proof of Proposition 1 in Bai (2003) it can be shown that Ĥ →
H > 0. Thus, Ĥ is invertible with probability approaching 1. Note that Ĝ(X) = Ŷ F̂ /T =

G(X)F ′F̂ /T + V̂ F̂ /T . Write F = F̂ Ĥ−1 + F − F̂ Ĥ−1, then

Ĝ(X) = G(X)(Ĥ ′)−1 +G(X)(F − F̂ Ĥ−1)′F̂ /T + V̂ F̂ /T,

and thus

∥Ĝ(X)−G(X)(Ĥ ′)−1∥
√
n ≤ ∥G(X)∥√

n
· ∥F − F̂ Ĥ−1∥√

T
· ∥F̂ ∥√

T
+

∥V̂ ∥√
nT

· ∥F̂ ∥√
T

= OP (εnT ).

Then the second part of Theorem 1 follows.

Finally, note that B̂ = ÂF̂ /T = B0(F
′F̂ /T ) + (Â−A0)F̂ /T . It follows from Proposition

1 that

∥B̂ −B0(F
′F̂ /T )∥ ≤ ∥Â−A0∥√

T
· ∥F̂ ∥√

T
= OP (εnT ). (A.3)

Thus, for any x ∈ X ,

ĝ(x)′ = ϕkn(x)
′B̂ = ϕkn(x)

′B0(F
′F̂ /T ) + ϕkn(x)

′
(
B̂ −B0(F

′F̂ /T )
)

= g(x)′(Ĥ−1)′ + (ϕkn(x)
′B0 − g(x)′)(F ′F̂ /T ) + ϕkn(x)

′
(
B̂ −B0(F

′F̂ /T )
)
+OP (εnT ).

Thus, it follows from (A.3) and Assumption 1 that

sup
X

∥∥∥ĝ(x)− Ĥ−1g(x)
∥∥∥ ≤ OP (k

−α
n ) + sup

X
∥ϕkn(x)∥ ·OP (εnT ) = OP (

√
knεnT ).

This completes the proof.

Lemma 2. Let ξit = θ0t(xi) − πnθ0t(xi) = g(xi)
′ft − a′

0tϕkn(xi) and ψit = F (−ξit) − 1{uit ≤
−ξit}. If Assumptions 1 to 3 hold, then√√√√ 1

T

T∑
t=1

∥∥∥∥∥ât − a0t − f−1(0) · Σ̂−1
ϕ · 1

n

n∑
i=1

ψitϕkn(xi)

∥∥∥∥∥
2

= OP

(
k−α
n

)
+OP (ηnT ) .

Proof. Step 1: For any a ∈ RDkn define:

mt(a) =
1

n

n∑
i=1

[
τ − 1{uit ≤ (a− a0t)

′ϕkn(xi)− ξit}
]
ϕkn(xi),
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m∗
t (a) =

1

n

n∑
i=1

[
τ − F

(
(a− a0t)

′ϕkn(xi)− ξit
)]

ϕkn(xi).

Since F (−ξit) = τ − f (−ξ∗it) · ξit where ξ∗it is between 0 and ξit, it follows that

m∗
t (a0t) =

1

n

n∑
i=1

f (−ξ∗it) · ξit · ϕkn(xi). (A.4)

Taylor Expansion of m∗
t (ât) around a0t gives

m∗
t (ât) = m∗

t (a0t)−M∗
t (ãt) · (ât − a0t) (A.5)

where ãt is between a0t and ât and

M∗
t (ãt) = −∂m

∗
t (a)

∂a′ |a=ãt =
1

n

n∑
i=1

f
(
(ãt − a0t)

′ϕkn(xi)− ξit
)
· ϕkn(xi)ϕkn(xi)

′. (A.6)

By Assumption 3(ii) one can write

M∗
t (ãt) = f(0) · Σ̂ϕ + n−1Φ(X)′D∗

tΦ(X), (A.7)

where Σ̂ϕ = n−1Φ(X)′Φ(X) and D∗
t is a n × n diagonal matrix whose diagonal elements are

bounded by in absolute values by L |(ãt − a0t)
′ϕkn(xi)− ξit|. Note that by Lemma 1,

max
1≤t≤T

∥D∗
t ∥S ≲ max

i,t

∣∣(ãt − a0t)
′ϕkn(xi)− ξit

∣∣
≤ max

1≤t≤T
∥ât − a0t∥ ·OP (

√
kn) +OP (k

−α
n ) = OP (

√
knεnT ). (A.8)

Moreover, one can write

m∗
t (ât) = mt(ât)− m̃t(a0t) + [m̃t(a0t)− m̃t(ât)] (A.9)

where m̃t(a) = mt(a)−m∗
t (a). It then follows from (A.5) (A.7) and (A.9) that

ât − a0t − f−1(0) · Σ̂−1
ϕ · m̃t(a0t) = f−1(0) · Σ̂−1

ϕ{
m∗

t (a0t)−mt(ât)− [m̃t(a0t)− m̃t(ât)]− n−1Φ(X)′D∗
tΦ(X)(ât − a0t)

}
,

where

m̃t(a0t) =
1

n

n∑
i=1

[F (−ξit)− 1{uit ≤ −ξit}]ϕkn(xi) =
1

n

n∑
i=1

ψitϕkn(xi).

Since f(0) is bounded below, and λmin(Σ̂ϕ) is bounded below with probability approaching 1, it
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suffices to show that

max
1≤t≤T

∥m∗
t (a0t)∥ = OP (k

−α
n ), (A.10)

max
1≤t≤T

∥mt(ât)∥ = OP (k
3/2
n /n), (A.11)

1

T

T∑
t=1

∥m̃t(a0t)− m̃t(ât)∥2 = OP

(
η2nT
)
, (A.12)

max
1≤t≤T

∥∥n−1Φ(X)′D∗
tΦ(X)(ât − a0t)

∥∥ = OP (
√
knε

2
nT ). (A.13)

Step 2: By (A.4) and Assumption 1,

max
1≤t≤T

∥m∗
t (a0t)∥

= max
1≤t≤T

∥∥∥∥∥ 1n
N∑
i=1

f (−ξ∗it) · ξit · ϕkn(xi)

∥∥∥∥∥
≤ max

1≤t≤T

∥∥∥∥∥ 1n
N∑
i=1

f (0) · ξit · ϕkn(xi)

∥∥∥∥∥+OP

(
k1/2−2α
n

)
.

Define zit = f (0) · ξit and zt = (z1t, . . . , zNt)
′, then

1

n

N∑
i=1

f (0) · ξit · ϕkn(xi) = N−1Φ(X)′zt

and

max
1≤t≤T

∥∥∥∥∥ 1n
N∑
i=1

f (0) · ξit · ϕkn(xi)

∥∥∥∥∥
= max

1≤t≤T

∥∥N−1Φ(X)′zt
∥∥ ≤

∥∥∥N−1/2Φ(X)
∥∥∥
S
· max
1≤t≤T

∥∥∥N−1/2zt

∥∥∥ = OP (k
−α
n ).

In sum, we have

max
1≤t≤T

∥m∗
t (a0t)∥ = OP (k

1/2−2α
n ) +OP (k

−α
n ) = OP (k

−α
n ),

which gives (A.10).

Step 3: Similar to the proof of Lemma A4 of Horowitz and Lee (2005) it can be shown that

max
1≤t≤T

∥mt(ât)∥ = OP (k
3/2
n /n),

which gives (A.11).
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Step 4: By (A.8) and Lemma 1

max
1≤t≤T

∥∥n−1Φ(X)′D∗
tΦ(X)(ât − a0t)

∥∥
≤ ∥Φ(X)/

√
n∥2S · max

1≤t≤T
∥D∗

t ∥S · max
1≤t≤T

∥ât − a0t∥ = OP (
√
knε

2
nT ),

which gives (A.13).

Step 5: Define:

δ1t(α) =
1

n

n∑
i=1

[
1{uit ≤ (a− a0t)

′ϕkn(xi)− ξit} − 1{uit ≤ −ξit}
]
ϕkn(xi),

δ2t(α) =
1

n

n∑
i=1

[
F
(
(a− a0t)

′ϕkn(xi)− ξit
)
− F (−ξit)

]
ϕkn(xi),

δ̃1t(α) = δ1t(α)− E[δ1t(α)], δ̃2t(α) = δ2t(α)− E[δ2t(α)].

Note that E[δ1t(α)] = E[δ2t(α)] because δ2t(α) = E[δ1t(α)|xi]. Then m̃t(ât) − m̃t(a0t) =

δ̃2t(ât)− δ̃1t(ât), and

1

T

T∑
t=1

∥m̃t(ât)− m̃t(a0t)∥2 ≤
1

T

T∑
t=1

∥∥∥δ̃1t(ât)
∥∥∥2 + 1

T

T∑
t=1

∥∥∥δ̃2t(ât)
∥∥∥2 . (A.14)

In what follows, we will show that

1

T

T∑
t=1

∥∥∥δ̃1t(ât)
∥∥∥2 = OP

(
ln(k−1/4

n ε
−1/2
nT ) · k5/2n εnTn

−1
)
, (A.15)

1

T

T∑
t=1

∥∥∥δ̃2t(ât)
∥∥∥2 = OP

(
ln(k−1/2

n ε−1
nT ) · k

3
nε

2
nTn

−1
)
, (A.16)

which imply (A.12) and therefore complete the proof. We will focus on the proof of (A.15) since

the proof of (A.16) is similar.

Let ϕjd(xi) be the jdth element of ϕkn(xi) for j = 1, . . . , kn; d = 1, . . . , D, and define

∆it(α,xi) = 1{uit ≤ (a− a0t)
′ϕkn(xi)− ξit} − 1{uit ≤ −ξit}.

Then for some C > 0, with probability approach 1,

1

T

T∑
t=1

∥∥∥δ̃1t(ât)
∥∥∥2 ≤ 1

n
· 1
T

T∑
t=1

kn∑
j=1

D∑
d=1

sup
∥a−a0t∥≤CεnT

∣∣∣∣∣ 1√
n

n∑
i=1

{∆it(α,xi)ϕjd(xi)− E[∆it(α,xi)ϕjd(xi)]}

∣∣∣∣∣
2
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We will show that

E

 sup
∥a−a0t∥≤CεnT

∣∣∣∣∣ 1√
n

n∑
i=1

{∆it(α,xi)ϕjd(xi)− E[∆it(α,xi)ϕjd(xi)]}

∣∣∣∣∣
2


= O
(
ln(k−1/4

n ε
−1/2
nT ) · k3/2n εnT

)
(A.17)

uniformly in t and j, from which (A.15) follows.

Define HεnT = {h(a,xi) ≡ ∆it(α,xi)ϕjd(xi) − E[∆it(α,xi)ϕjd(xi)] : ∥a − a0t∥ ≤ CεnT },
and for any h ∈ HεnT define Gnh = n−1/2

∑n
i=1 h(a,xi). Write

sup
∥a−a0t∥≤Cεn

∣∣∣∣∣ 1√
n

n∑
i=1

{∆it(α,xi)ϕjd(xi)− E[∆it(α,xi)ϕjd(xi)]}

∣∣∣∣∣ = ∥Gnh∥HεnT
,

then the left-hand side of (A.17) can be written as E ∥Gnh∥2HεnT
. Let N(HεnT , L2(Q), ϵ) be the

covering number of HεnT , where L2(Q) is the L2 norm for functions and Q is any probability

measure on X . Similar to the proof of (A.12) in Kato et al. (2012), it can be shown that

N(HεnT , L2(Q), 2ϵ) ≤ (A/ϵ)c1kn for some bounded constant c1 and A ≥ 3
√
e that do not depend

on t and j. Moreover, it is easy to show that suph∈HεnT
E[h2(a,xi)] ≤ c22

√
knεn for some bounded

constant c2. Then, applying Proposition B.1 of Kato et al. (2012), we have

E ∥Gnh∥HεnT
≤ c3

[
· ln(c4k−1/4

n ε
−1/2
nT ) · kn/

√
n+

√
ln(c4k

−1/4
n ε

−1/2
nT ) · k3/4n ε

1/2
nT

]
≤ c5

√
ln(k

−1/4
n ε

−1/2
nT ) · k3/4n ε

1/2
nT , (A.18)

where c3, c4, c5 are bounded constants that do not depend on t and j. Finally, (A.17) follows by

noting that (see Chapter 6 of Ledoux and Talagrand 1991)

E ∥Gnh∥2HεnT
≤
(
E ∥Gnh∥HεnT

)2
+O(n−1).

This completes the proof.

Proof of Theorem 2:

Proof. Let Ψ be the n× T matrix of ψit, then the result of Lemma 2 can be written as∥∥∥Â−A0 − f(0)−1 · Σ̂−1
ϕ Φ′(X)Ψ/n

∥∥∥ /√T = OP

(
k−α
n

)
+OP (ηnT ) . (A.19)
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From (A.2) and Lemma 1 we have

∥F̂ − FĤ∥/
√
T ≤ OP (1) · ∥FG(X)′V̂ /(nT )∥S +OP (ε

2
nT ). (A.20)

Define R(X) = Φ(X)B0 −G(X), then by Assumption 1(ii) ∥R(X)∥/
√
n = OP (k

−α
n ). More-

over, we can write

V̂ = Ŷ −G(X)F ′

= Φ(X)Â−G(X)F ′

= Φ(X)Â−Φ(X)A0 +Φ(X)A0 −G(X)F ′

= Φ(X)(Â−A0) +R(X)F ′.

Thus,

FG(X)′V̂ /(nT )

= F (Φ(X)B0 −R(X))′[Φ(X)(Â−A0) +R(X)F ′]/(nT )

= FB′
0Φ(X)′Φ(X)(Â−A0)/(nT )− FR(X)′Φ(X)(Â−A0)/(nT )

+FG(X)′R(X)F ′/(nT ).

It then follows from Theorem 1 and Lemma 1 that

∥FG(X)′V̂ /(nT )∥S ≤ ∥FB′
0Φ(X)′Φ(X)(Â−A0)/(nT )∥S +OP (k

−α
n ).

The above inequality and (A.20) imply that

∥F̂ − FĤ∥/
√
T ≤ ∥FB′

0Φ(X)′Φ(X)(Â−A0)/(nT )∥S +OP (k
−α
n ) +OP (ε

2
nT ). (A.21)

By (A.19) and Assumption 1(ii), we have

∥FB′
0Φ(X)′Φ(X)(Â−A0)/(nT )∥S

≤ f(0)−1∥B′
0Φ(X)′Φ(X)Σ̂−1

ϕ Φ′(X)Ψ/(n2T 1/2)∥S +OP

(
k−α
n + ηnT

)
= f(0)−1∥B′

0Φ
′(X)Ψ/(nT 1/2)∥S +OP

(
k−α
n + ηnT

)
≤ f(0)−1∥G′(X)Ψ/(nT 1/2)∥+ ∥G(X)−Φ(X)B0∥/

√
n · ∥Ψ∥/

√
nT +OP

(
k−α
n + ηnT

)
= f(0)−1∥G′(X)Ψ/(nT 1/2)∥+OP

(
k−α
n + ηnT

)
.

Note that

∥G′(X)Ψ/(nT 1/2)∥ =
1√
n
·

√√√√ 1

T

T∑
t=1

∥∥∥∥∥ 1√
n

n∑
i=1

g(xi)ψit

∥∥∥∥∥
2

= OP (n
−1/2)
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because it is easy to see that E
∥∥n−1/2

∑n
i=1 g(xi)ψit

∥∥2 <∞ for all t. It then follows from (A.21)

that

∥F̂ − FĤ∥/
√
T = OP (n

−1/2) +OP (k
−α
n ) +OP (ηnT ) +OP (ε

2
nT ).

This completes the proof.

Lemma 3. Under Assumptions 1, 2 and 4, we have∥∥∥Â−A0 −Σ−1
fϕ Φ′(X)Ψ(X)/n

∥∥∥ /√T = OP

(
k−α
n

)
+OP (ηnT ) .

where ψit(xi) = F (−ξit|xi)− 1{uit ≤ −ξit} and Ψ(X) is the n× T matrix of ψit(xi).

Proof. The proof is similar to the proof of Lemma 2. Therefore, it is omitted to save space.

Proof of Theorem 3:

Proof. By the proof of Theorem 1, for any x ∈ X ,

ĝ(x) = (F ′F̂ /T )′g(x) + (F ′F̂ /T )′(B′
0ϕkn(x)− g(x)) + (B̂ −B0(F

′F̂ /T ))′ϕkn(x).

Moreover,

B̂ −B0(F
′F̂ /T ) = (Â−A0)FĤ/T + (Â−A0)(F̂ − FĤ)/T.

Thus, by Lemma 1 and Theorem 1,

ĝ(x)− (F ′F̂ /T )′g(x) = Ĥ ′F ′(Â−A0)
′ϕkn(x)/T +OP (k

−α
n ) +OP (ε

2
nT

√
kn).

It then follows from Lemma 3 that

ĝ(x)− (F ′F̂ /T )′g(x) = Ĥ ′F ′Ψ′(X)Φ(X)Σ−1
fϕ ϕkn(x)/(nT ) +OP (k

1/2−α
n ) +OP (

√
knηnT ).

Define dT (xi) = T−1
∑T

t=1 ftψit(xi), q(xi) = ϕkn(xi)
′Σ−1

fϕ ϕkn(x), then we can write

F ′Ψ′(X)Φ(X)Σ−1
fϕ ϕkn(x)/(nT ) =

1

n

n∑
i=1

dT (xi)q(xi).

Note that E[dT (xi)q(xi)] = 0 because E[dT (xi)|xi] = 0, and it is easy to show that

E[dT (xi)dT (xi)
′q2(xi)] = τ(1− τ)(F ′F /T 2)ϕ′

kn(x)Σ
−1
fϕ ΣϕΣ

−1
fϕ ϕkn(x) + o(1)

= τ(1− τ)(F ′F /T 2)σ2kn + o(1).
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Thus, we have

Σ
−1/2
T,τ (Ĥ ′)−1 ·

√
nT

σkn

(
ĝ(x)− (F ′F̂ /T )′g(x)

)
= Σ

−1/2
T,τ · 1√

n

n∑
i=1

√
TdT (xi)q(xi)/σkn

+OP (k
1/2−α
n +

√
knηnT )

√
nTσ−1

kn
. (A.22)

Finally, it follows from the Lyapunov’s CLT and Assumption 4(iv) that

Σ
−1/2
T,τ (Ĥ ′)−1 ·

√
nT

σkn

(
ĝ(x)− (F ′F̂ /T )′g(x)

)
d→ N(0, IR).

This completes the proof.

Proof of Theorem 4:

Proof. Define R(X) = Φ(X)B0 −G(X), we can write

Ŷ = Φ(X)A0 +Φ(X)(Â−A0) = G(X)F ′ +R(X)F ′ +Φ(X)(Â−A0).

Thus,

F̃ = Ŷ ′Ĝ(X) · (Ĝ(X)′Ĝ(X))−1 = F (G(X)′Ĝ(X)/n)(Ĝ(X)′Ĝ(X)/n)−1

+ F (R(X)′Ĝ(X)/n)(Ĝ(X)′Ĝ(X)/n)−1 + (Â−A0)
′(Φ(X)′Ĝ(X)/n)(Ĝ(X)′Ĝ(X)/n)−1,

and

f̃t − H̃ ′ft = (Ĝ(X)′Ĝ(X)/n)−1(Ĝ(X)′R(X)/n)ft

+ (Ĝ(X)′Ĝ(X)/n)−1(Ĝ(X)′Φ(X)/n)(ât − a0t).

It is easy to see from Theorem 1 and Assumption 1(ii) that the first term on the right-hand side

of the above equation is OP (k
−α
n ). Moreover, by Lemma 3, the second term can be written as

(Ĝ(X)′Ĝ(X)/n)−1 · (Ĝ(X)′Φ(X)/n) ·Σ−1
fϕ · 1

n

n∑
i=1

ϕkn(xi)ψit(xi) +OP (k
−α
n ) +OP (ηnT ).

By Theorem 1 we can show that

∥(Ĝ(X)′Ĝ(X)/n)−1 − Ĥ ′Σ−1
g Ĥ∥ = OP (εnT ),

∥(Ĝ(X)′Φ(X)/n)− Ĥ−1E[g(xi)ϕkn(xi)
′]∥S = OP (εnT ),
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∥∥∥∥∥ 1n
n∑

i=1

ϕkn(xi)ψit(xi)

∥∥∥∥∥ = OP (
√
kn/n),

it then follows from Assumption 4(iii) that

(Ĥ ′)−1√n(f̃t − H̃ ′ft) = Σ−1
g E[g(xi)ϕkn(xi)

′]Σ−1
fϕ

(
1√
n

n∑
i=1

ϕkn(xi)ψit(xi)

)
+OP (εnTk

1/2
n ) +OP (n

1/2k−α
n ) +OP (n

1/2ηnT ).

By the Lyapunov’s CLT we can show that

1√
n

n∑
i=1

ϕkn(xi)ψit(xi)
d→ N(0, τ(1− τ)Σϕ),

then the desired result follows from Assumption 5.

Proof of Theorem 5:

Proof. First, note that

∥Φ(X)ÂÂ′Φ(X)′ −G(X)F ′FG(X)′∥/(nT )

≤ 2∥G(X)F ′∥/
√
nT · ∥Φ(X)Â−G(X)F ′∥/

√
nT + ∥Φ(X)Â−G(X)F ′∥2/(nT )

= OP (1) · ∥V̂ ∥/
√
nT + ∥V̂ ∥2/(nT ).

It then follows from Lemma 1(ii) that

∥Φ(X)ÂÂ′Φ(X)′ −G(X)F ′FG(X)′∥/(nT ) = OP (εnT ). (A.23)

Second, Assumption 2(iii) and (iv) imply that the largestR eigenvalues ofG(X)F ′FG(X)′/(nT ),

which are also the R eigenvalues of (F ′F /T ) ·G(X)′G(X)/n, converge in probability to the R

eigenvalues of (F ′F /T )·Σg. Also, note that the remaining eigenvalues ofG(X)F ′FG(X)′/(nT )

are all 0, it then follows from (A.23) and the Wielandt-Hoffman inequality that ρ̂j = OP (εnT )

for j = R+1, . . . , R̄, and ρ̂j converges in probability in some positive constant for j = 1, . . . , R.

The desired result then follows because P [ρ̂j > pn] → 1 for j = 1, . . . , R and P [ρ̂j > pn] → 0 for

j = R+ 1, . . . , R̄.
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B Figures and Tables

Table 1: Estimating the number of factors: rank minimization estimator

T n N(0, 1) t(3) Cauchy(0,1)

τ = 0.25 5 50 [0.13 0.65 0.23] [0.03 0.41 0.56] [0.01 0.10 0.89]

5 100 [0.10 0.72 0.19] [0.02 0.44 0.54] [0.00 0.03 0.97]

5 200 [0.23 0.77 0.00] [0.12 0.82 0.06] [0.00 0.17 0.83]

5 1000 [0.17 0.83 0.00] [0.16 0.84 0.00] [0.06 0.81 0.13]

10 50 [0.17 0.76 0.07] [0.03 0.50 0.47] [0.02 0.06 0.92]

10 100 [0.08 0.89 0.03] [0.03 0.65 0.46] [0.00 0.03 0.97]

10 200 [0.07 0.93 0.00] [0.05 0.95 0.00] [0.00 0.24 0.76]

10 1000 [0.03 0.97 0.00] [0.02 0.98 0.00] [0.01 0.98 0.01]

τ = 0.5 5 50 [0.19 0.71 0.10] [0.09 0.56 0.35] [0.00 0.15 0.85]

5 100 [0.17 0.76 0.08] [0.07 0.59 0.34] [0.00 0.20 0.80]

5 200 [0.23 0.77 0.00] [0.19 0.80 0.01] [0.06 0.75 0.19]

5 1000 [0.18 0.82 0.00] [0.15 0.85 0.00] [0.13 0.87 0.00]

10 50 [0.20 0.78 0.03] [0.08 0.76 0.15] [0.00 0.13 0.87]

10 100 [0.12 0.87 0.01] [0.05 0.87 0.08] [0.00 0.24 0.76]

10 200 [0.05 0.95 0.00] [0.05 0.95 0.00] [0.03 0.94 0.03]

10 1000 [0.01 0.99 0.00] [0.02 0.98 0.00] [0.02 0.99 0.00]

τ = 0.75 5 50 [0.11 0.68 0.21] [0.04 0.41 0.56] [0.01 0.09 0.90]

5 100 [0.10 0.71 0.19] [0.02 0.42 0.56] [0.00 0.04 0.96]

5 200 [0.22 0.78 0.00] [0.14 0.81 0.05] [0.00 0.15 0.85]

5 1000 [0.18 0.82 0.00] [0.17 0.83 0.00] [0.04 0.82 0.15]

10 50 [0.15 0.78 0.08] [0.04 0.50 0.46] [0.01 0.05 0.94]

10 100 [0.11 0.86 0.04] [0.03 0.65 0.32] [0.00 0.03 0.97]

10 200 [0.06 0.94 0.00] [0.05 0.94 0.01] [0.01 0.27 0.73]

10 1000 [0.02 0.98 0.00] [0.02 0.98 0.00] [0.02 0.97 0.01]

Note: the DGP is yit =
∑3

r=1 λirftr +
(
x2i1 + x2i2 + x2i3

)
uit, where ft1 = 1, ft2, ft3 ∼ i.i.d N(0, 1).

The number of characteristics is 5 and all characteristics xid are drawn independently from the

uniform distribution: U [−1, 1]. g1(x) = sin(2πx), g2(x) = sin(πx) and g3(x) = cos(πx), and

λi1 =
∑

d=1,3,5 g1(xid), λi2 =
∑

d=1,2 g2(xid), λi3 =
∑

d=3,4 g3(xid). uit are i.i.d variables drawn

from three different distributions. In the first step quantile sieve estimation, kn = n1/3 and we

use the Chebyshev polynomials of the second kind as the basis functions. For the estimator of the

number of factors, the threshold pn is chosen as in (9) with d = 1/4. The reported results are

[frequency of R̂ < R; frequency of R̂ = R; frequency of R̂ > R] from 1000 replications.
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Table 2: Estimating the number of factors: eigen-ratio estimator

T n N(0, 1) t(3) Cauchy(0,1)

τ = 0.25 5 50 [0.57 0.25 0.19] [0.54 0.22 0.25] [0.54 0.17 0.29]

5 100 [0.58 0.33 0.09] [0.58 0.27 0.15] [0.59 0.15 0.26]

5 200 [0.44 0.54 0.01] [0.54 0.43 0.04] [0.62 0.24 0.14]

5 1000 [0.23 0.77 0.00] [0.31 0.69 0.00] [0.56 0.42 0.02]

10 50 [0.46 0.37 0.17] [0.45 0.18 0.37] [0.47 0.07 0.46]

10 100 [0.37 0.59 0.04] [0.46 0.42 0.11] [0.60 0.09 0.31]

10 200 [0.09 0.91 0.00] [0.19 0.80 0.01] [0.59 0.31 0.11]

10 1000 [0.01 0.99 0.00] [0.03 0.97 0.00] [0.17 0.83 0.00]

τ = 0.5 5 50 [0.58 0.28 0.14] [0.57 0.22 0.20] [0.50 0.20 0.30]

5 100 [0.58 0.33 0.09] [0.57 0.28 0.15] [0.56 0.21 0.22]

5 200 [0.42 0.57 0.01] [0.46 0.51 0.03] [0.54 0.41 0.06]

5 1000 [0.21 0.79 0.00] [0.23 0.77 0.00] [0.28 0.72 0.00]

10 50 [0.41 0.46 0.13] [0.46 0.33 0.21] [0.42 0.10 0.48]

10 100 [0.30 0.66 0.04] [0.36 0.57 0.07] [0.51 0.24 0.26]

10 200 [0.06 0.94 0.00] [0.11 0.89 0.00] [0.22 0.76 0.02]

10 1000 [0.01 0.99 0.00] [0.02 0.98 0.00] [0.03 0.97 0.00]

τ = 0.75 5 50 [0.58 0.25 0.17] [0.54 0.22 0.24] [0.55 0.17 0.28]

5 100 [0.57 0.32 0.10] [0.59 0.24 0.17] [0.56 0.20 0.24]

5 200 [0.43 0.55 0.02] [0.52 0.43 0.04] [0.65 0.21 0.14]

5 1000 [0.24 0.76 0.00] [0.33 0.67 0.00] [0.55 0.44 0.01]

10 50 [0.46 0.36 0.18] [0.44 0.20 0.37] [0.47 0.05 0.48]

10 100 [0.36 0.59 0.06] [0.46 0.40 0.14] [0.63 0.09 0.28]

10 200 [0.11 0.89 0.00] [0.19 0.80 0.01] [0.58 0.31 0.11]

10 1000 [0.01 0.99 0.00] [0.03 0.97 0.00] [0.16 0.83 0.01]

Note: the DGP is yit =
∑3

r=1 λirftr +
(
x2i1 + x2i2 + x2i3

)
uit, where ft1 = 1, ft2, ft3 ∼ i.i.d N(0, 1).

The number of characteristics is 5 and all characteristics xid are drawn independently from the

uniform distribution: U [−1, 1]. g1(x) = sin(2πx), g2(x) = sin(πx) and g3(x) = cos(πx), and

λi1 =
∑

d=1,3,5 g1(xid), λi2 =
∑

d=1,2 g2(xid), λi3 =
∑

d=3,4 g3(xid). uit are i.i.d variables drawn

from three different distributions. In the first step quantile sieve estimation, kn = n1/3 and we use

the Chebyshev polynomials of the second kind as the basis functions. The estimator for the number

of factors is the integer that maximizes the eigen-ratios. The reported results are [frequency of R̂ <

R; frequency of R̂ = R; frequency of R̂ > R] from 1000 replications.
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Table 3: Factor estimation using QPPCA

N(0, 1) t(3) Cauchy(0,1)

T n f1t f2t f3t f1t f2t f3t f1t f2t f3t

τ = 0.25 10 50 0.859 0.879 0.574 0.738 0.745 0.630 0.386 0.370 0.609

10 100 0.971 0.956 0.857 0.938 0.890 0.835 0.670 0.566 0.767

10 200 0.989 0.983 0.924 0.978 0.959 0.911 0.862 0.767 0.867

10 500 0.997 0.995 0.979 0.994 0.990 0.972 0.968 0.940 0.950

50 50 0.893 0.909 0.417 0.751 0.796 0.499 0.086 0.069 0.375

50 100 0.976 0.968 0.824 0.957 0.940 0.797 0.623 0.407 0.654

50 200 0.990 0.986 0.901 0.982 0.977 0.892 0.919 0.838 0.821

50 500 0.997 0.995 0.973 0.995 0.992 0.967 0.984 0.975 0.941

τ = 0.75 10 50 0.861 0.876 0.581 0.749 0.749 0.623 0.383 0.362 0.605

10 100 0.971 0.955 0.858 0.933 0.894 0.834 0.682 0.573 0.768

10 200 0.989 0.983 0.921 0.979 0.960 0.905 0.867 0.777 0.867

10 500 0.997 0.995 0.979 0.994 0.990 0.974 0.973 0.937 0.950

50 50 0.893 0.911 0.420 0.749 0.794 0.493 0.081 0.066 0.380

50 100 0.977 0.967 0.824 0.958 0.938 0.794 0.617 0.400 0.656

50 200 0.990 0.986 0.901 0.982 0.976 0.894 0.915 0.832 0.818

50 500 0.997 0.995 0.972 0.995 0.992 0.967 0.984 0.974 0.938

Note: the DGP is Yit = λi1ft1+λi2ft2+(λi3ft3)uit, where ft3 = |ht|, ft1, ft2, ht ∼ i.i.d N(0, 1). The number

of characteristics is 5 and all characteristics xid are independently drawn from the uniform distribution:

U [−1, 1]. g1(x) = sin(2πx), g2(x) = sin(πx) and g3(x) = |cos(πx)|. The factor loading functions are

generated as λi1 =
∑

d=1,3,5 g1(xid), λi2 =
∑

d=1,2 g2(xid) and λi3 =
∑

d=3,4 g3(xid). {uit} are i.i.d draws

from three different distributions. 3 factors are estimated at each τ using the proposed method in this paper,

and the reported results are the averages of the adjusted R2 of regressing the true factors on the estimated

factors from 1000 replications.
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Table 4: Factor estimation using QFA

N(0, 1) t(3) Cauchy(0,1)

T n f1t f2t f3t f1t f2t f3t f1t f2t f3t

τ = 0.25 10 50 0.887 0.821 0.561 0.808 0.706 0.528 0.516 0.418 0.449

10 100 0.898 0.833 0.586 0.822 0.727 0.574 0.525 0.427 0.501

10 200 0.904 0.841 0.624 0.834 0.735 0.584 0.525 0.443 0.504

10 500 0.908 0.840 0.643 0.841 0.740 0.608 0.513 0.420 0.512

50 50 0.964 0.948 0.786 0.935 0.902 0.725 0.724 0.537 0.473

50 100 0.983 0.976 0.884 0.972 0.956 0.848 0.871 0.767 0.669

50 200 0.992 0.988 0.936 0.986 0.977 0.911 0.935 0.853 0.802

50 500 0.996 0.994 0.965 0.994 0.989 0.951 0.963 0.906 0.880

τ = 0.75 10 50 0.875 0.835 0.551 0.808 0.719 0.523 0.510 0.414 0.447

10 100 0.898 0.938 0.595 0.820 0.730 0.583 0.523 0.420 0.506

10 200 0.904 0.846 0.616 0.828 0.736 0.600 0.520 0.429 0.497

10 500 0.899 0.838 0.625 0.843 0.742 0.616 0.528 0.433 0.489

50 50 0.964 0.947 0.785 0.935 0.901 0.722 0.722 0.551 0.486

50 100 0.983 0.975 0.884 0.972 0.956 0.846 0.874 0.760 0.672

50 200 0.992 0.988 0.935 0.986 0.978 0.911 0.931 0.852 0.799

50 500 0.996 0.994 0.964 0.994 0.989 0.949 0.964 0.903 0.878

Note: the DGP is Yit = λi1ft1+λi2ft2+(λi3ft3)uit, where ft3 = |ht|, ft1, ft2, ht ∼ i.i.d N(0, 1). The number

of characteristics is 5 and all characteristics xid are independently drawn from the uniform distribution:

U [−1, 1]. g1(x) = sin(2πx), g2(x) = sin(πx) and g3(x) = |cos(πx)|. The factor loading functions are

generated as λi1 =
∑

d=1,3,5 g1(xid), λi2 =
∑

d=1,2 g2(xid) and λi3 =
∑

d=3,4 g3(xid). {uit} are i.i.d draws

from three different distributions. 3 factors are estimated at each τ using the QFA proposed by Chen et al.

(2021), and the reported results are the averages of the adjusted R2 of regressing the true factors on the

estimated factors from 1000 replications.
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Table 5: Factor estimation using PCA and PPCA

N(0, 1) t(3) Cauchy(0,1)

T n f1t f2t f3t f1t f2t f3t f1t f2t f3t

PCA 10 50 0.955 0.921 0.420 0.847 0.723 0.455 0.271 0.250 0.392

10 100 0.964 0.929 0.450 0.858 0.757 0.514 0.286 0.289 0.410

10 200 0.970 0.944 0.478 0.871 0.751 0.530 0.289 0.285 0.422

10 500 0.975 0.944 0.493 0.879 0.767 0.568 0.292 0.303 0.433

50 50 0.973 0.957 0.084 0.894 0.781 0.079 0.003 -0.001 0.032

50 100 0.986 0.977 0.131 0.937 0.862 0.116 0.032 0.031 0.066

50 200 0.993 0.988 0.149 0.961 0.901 0.141 0.044 0.048 0.075

50 500 0.997 0.994 0.166 0.977 0.933 0.161 0.055 0.054 0.091

PPCA 10 50 0.949 0.962 0.382 0.843 0.866 0.379 0.277 0.282 0.387

10 100 0.989 0.984 0.374 0.960 0.930 0.379 0.321 0.314 0.406

10 200 0.995 0.993 0.382 0.983 0.969 0.383 0.318 0.309 0.409

10 500 0.998 0.997 0.400 0.994 0.989 0.402 0.321 0.317 0.417

50 50 0.953 0.963 0.060 0.858 0.882 0.054 0.003 0.001 0.029

50 100 0.987 0.982 0.095 0.962 0.947 0.085 0.036 0.031 0.062

50 200 0.994 0.992 0.110 0.982 0.974 0.100 0.048 0.049 0.072

50 500 0.998 0.997 0.130 0.994 0.990 0.114 0.058 0.056 0.090

Note: the DGP is Yit = λi1ft1+λi2ft2+(λi3ft3)uit, where ft3 = |ht|, ft1, ft2, ht ∼ i.i.d N(0, 1). The number

of characteristics is 5 and all characteristics xid are independently drawn from the uniform distribution:

U [−1, 1]. g1(x) = sin(2πx), g2(x) = sin(πx) and g3(x) = |cos(πx)|. The factor loading functions are

generated as λi1 =
∑

d=1,3,5 g1(xid), λi2 =
∑

d=1,2 g2(xid) and λi3 =
∑

d=3,4 g3(xid). {uit} are i.i.d draws

from three different distributions. 3 factors are estimated using PCA and PPCA respectively, and the

reported results are the averages of the adjusted R2 of regressing the true factors on the estimated factors

from 1000 replications.
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Table 6: Factor estimation using QPPCA: R = 3, D = 2

N(0, 1) t(3) Cauchy(0,1)

T n f1t f2t f3t f1t f2t f3t f1t f2t f3t

τ = 0.25 10 50 0.731 0.880 0.606 0.588 0.806 0.617 0.348 0.481 0.602

10 100 0.932 0.948 0.830 0.877 0.902 0.799 0.655 0.668 0.731

10 200 0.969 0.978 0.916 0.947 0.960 0.901 0.778 0.837 0.847

10 500 0.990 0.993 0.974 0.983 0.989 0.968 0.929 0.941 0.942

50 50 0.665 0.875 0.485 0.488 0.782 0.473 0.100 0.202 0.390

50 100 0.934 0.957 0.811 0.892 0.921 0.766 0.473 0.531 0.602

50 200 0.969 0.982 0.906 0.949 0.970 0.889 0.785 0.839 0.796

50 500 0.990 0.993 0.968 0.984 0.989 0.961 0.952 0.963 0.931

τ = 0.5 10 50 0.643 0.889 0.152 0.524 0.837 0.165 0.364 0.664 0.201

10 100 0.927 0.949 0.127 0.907 0.935 0.136 0.807 0.845 0.171

10 200 0.968 0.981 0.128 0.955 0.974 0.136 0.917 0.940 0.158

10 500 0.990 0.994 0.135 0.987 0.991 0.126 0.979 0.986 0.142

50 50 0.697 0.913 -0.013 0.581 0.870 -0.011 0.279 0.682 0.005

50 100 0.945 0.968 0.004 0.929 0.956 0.003 0.857 0.899 0.004

50 200 0.973 0.984 0.011 0.967 0.980 0.012 0.945 0.968 0.014

50 500 0.991 0.994 0.018 0.989 0.993 0.017 0.984 0.989 0.018

τ = 0.75 10 50 0.718 0.878 0.603 0.609 0.804 0.629 0.356 0.473 0.596

10 100 0.932 0.948 0.834 0.874 0.900 0.791 0.636 0.664 0.737

10 200 0.970 0.980 0.922 0.943 0.962 0.907 0.796 0.833 0.848

10 500 0.991 0.993 0.975 0.984 0.987 0.968 0.933 0.941 0.943

50 50 0.663 0.872 0.498 0.485 0.779 0.476 0.102 0.203 0.392

50 100 0.935 0.956 0.813 0.889 0.920 0.762 0.450 0.510 0.608

50 200 0.969 0.981 0.906 0.951 0.970 0.890 0.792 0.845 0.800

50 500 0.990 0.993 0.969 0.984 0.989 0.962 0.951 0.964 0.931

Note: the DGP is Yit = λi1ft1 + λi2ft2 + (λi3ft3)uit, where ft3 = |ht|, ft1, ft2, ht ∼ i.i.d N(0, 1). The

number of characteristics is 2 and all characteristics xid are independently drawn from the uniform distri-

bution: U [−1, 1]. g1(x) = sin(2πx), g2(x) = sin(πx) and g3(x) = |cos(πx)|. λi1 =
∑

d=1,2 g1(xid), λi2 =∑
d=1,2 g2(xid) and λi3 =

∑
d=1,2 g3(xid). {uit} are i.i.d draws from three different distributions. 3 factors are

estimated at each τ using the method proposed in this paper, and the reported results are the averages of the

adjusted R2 of regressing the true factors on the estimated factors from 1000 replications.
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Table 7: Factor estimation using SQFA: R = 3, D = 2

N(0, 1) t(3) Cauchy(0,1)

T n f1t f2t f3t f1t f2t f3t f1t f2t f3t

τ = 0.25 10 50 0.406 0.826 0.205 0.364 0.793 0.218 0.295 0.649 0.277

10 100 0.595 0.698 0.195 0.578 0.690 0.208 0.556 0.656 0.231

10 200 0.623 0.706 0.223 0.604 0.680 0.238 0.573 0.676 0.277

10 500 0.630 0.682 0.233 0.614 0.687 0.239 0.596 0.686 0.301

50 50 0.311 0.845 0.040 0.267 0.804 0.058 0.191 0.662 0.101

50 100 0.516 0.680 0.036 0.503 0.660 0.043 0.471 0.627 0.063

50 200 0.523 0.691 0.058 0.518 0.676 0.067 0.487 0.649 0.095

50 500 0.578 0.656 0.061 0.553 0.651 0.068 0.543 0.626 0.102

τ = 0.5 10 50 0.383 0.849 0.133 0.351 0.819 0.132 0.314 0.749 0.142

10 100 0.584 0.695 0.150 0.573 0.688 0.143 0.531 0.674 0.154

10 200 0.584 0.713 0.156 0.559 0.716 0.157 0.539 0.678 0.158

10 500 0.615 0.689 0.157 0.600 0.663 0.157 0.598 0.649 0.152

50 50 0.277 0.865 -0.014 0.236 0.843 -0.013 0.185 0.773 -0.014

50 100 0.509 0.679 0.007 0.471 0.669 0.007 0.439 0.625 0.005

50 200 0.514 0.688 0.015 0.493 0.680 0.016 0.452 0.669 0.016

50 500 0.557 0.639 0.022 0.544 0.636 0.023 0.503 0.623 0.022

τ = 0.75 10 50 0.402 0.816 0.200 0.374 0.804 0.213 0.316 0.630 0.268

10 100 0.606 0.688 0.191 0.564 0.900 0.195 0.556 0.666 0.226

10 200 0.590 0.691 0.221 0.584 0.962 0.215 0.582 0.672 0.281

10 500 0.638 0.691 0.231 0.622 0.987 0.259 0.620 0.675 0.285

50 50 0.318 0.837 0.039 0.268 0.779 0.049 0.191 0.658 0.099

50 100 0.525 0.671 0.039 0.499 0.920 0.044 0.465 0.624 0.067

50 200 0.528 0.688 0.057 0.510 0.970 0.064 0.481 0.654 0.101

50 500 0.574 0.652 0.063 0.564 0.989 0.067 0.543 0.627 0.096

Note: the DGP is Yit = λi1ft1 + λi2ft2 + (λi3ft3)uit, where ft3 = |ht|, ft1, ft2, ht ∼ i.i.d N(0, 1). The

number of characteristics is 2 and all characteristics xid are independently drawn from the uniform distri-

bution: U [−1, 1]. g1(x) = sin(2πx), g2(x) = sin(πx) and g3(x) = |cos(πx)|. λi1 =
∑

d=1,2 g1(xid), λi2 =∑
d=1,2 g2(xid) and λi3 =

∑
d=1,2 g3(xid). {uit} are i.i.d draws from three different distributions. 2 factors are

estimated at each τ using the method proposed by Ma et al. (2021), and the reported results are the averages

of the adjusted R2 of regressing the true factors on the estimated factors from 1000 replications.
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Table 8: Estimated numbers of factors

Five largest eigenvalues of Ŷ Ŷ ′ pn r̂ r̂QFA

mean(PPCA) 0.929 0.090 0.081 0.066 0.043 1

quantile τ=0.5 0.887 0.094 0.084 0.053 0.043 0.224 1 1

τ=0.25 1.713 0.110 0.098 0.059 0.047 0.311 1 1

τ=0.75 2.706 0.115 0.087 0.074 0.067 0.391 1 1

τ=0.05 8.415 0.311 0.173 0.161 0.138 0.690 1 1

τ=0.95 13.715 0.567 0.428 0.291 0.246 0.880 1 1

Note: this table shows the estimated numbers of factors using the eigen-ratio estimator

proposed by Fan et al. (2016), the proposed estimator in this paper, and the rank-minimization

estimator proposed by Chen et al. (2021) for different τs. Column 3 to Column 7 give the

5 largest eigenvalues of Ŷ Ŷ ′, where Ŷ is the matrix of fitted values in the first-step sieve

regressions, and pn is the threshold value defined in (9).

Table 9: Correlations and means of estimated factors

τ=0.05 τ=0.25 τ=0.5 τ=0.75 τ=0.95 PPCA Mean

τ=0.05 1 0.922 0.852 0.767 0.611 0.863 0.943

τ=0.25 1 0.975 0.924 0.753 0.973 0.738

τ=0.5 1 0.971 0.814 0.990 -0.121

τ=0.75 1 0.877 0.979 -0.784

τ=0.95 1 0.862 -0.943

PPCA 1 -0.231

Note: this table shows the correlations and sample means of the estimated mean

factor using PPCA and the estimated quantile factors at different τs using QP-

PCA.
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Figure 1: Estimation of factors: fixed T and increasing n.
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Note: the DGP is Yit = λi1ft1 + λi2ft2 + (λi3ft3)uit, where ft3 = |ht|, ft1, ft2, ht ∼ i.i.d N(0, 1). The
number of characteristics is 5 and all characteristics xid (i = 1, ...N and d = 1, 2, 3, 4, 5) are independently
drawn from the uniform distribution: U [−1, 1]. g1(x) = sin(2πx), g2(x) = sin(πx) and g3(x) = |cos(πx)|.
The factor loading functions are generated as λi1 =

∑
d=1,3,5 g1(xid), λi2 =

∑
d=1,2 g2(xid) and λi3 =∑

d=3,4 g3(xid). {uit} are i.i.d draws from three different distributions. The mean factors (ft1 and ft2)
are estimated by four methods: PCA, PPCA, QFA and QPPCA at τ = 0.5. The reported results are
the average Frobenius errors: ∥F̂ −FĤ∥/

√
T from 1000 repetitions, where Ĥ is the associated rotation

matrix for each estimator.
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Figure 2: Estimation of factors: fixed n and increasing T .
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Note: the DGP is Yit = λi1ft1 + λi2ft2 + (λi3ft3)uit, where ft3 = |ht|, ft1, ft2, ht ∼ i.i.d N(0, 1). The
number of characteristics is 5 and all characteristics xid (i = 1, ...N and d = 1, 2, 3, 4, 5) are independently
drawn from the uniform distribution: U [−1, 1]. g1(x) = sin(2πx), g2(x) = sin(πx) and g3(x) = |cos(πx)|.
The factor loading functions are generated as λi1 =

∑
d=1,3,5 g1(xid), λi2 =

∑
d=1,2 g2(xid) and λi3 =∑

d=3,4 g3(xid). {uit} are i.i.d draws from three different distributions. The mean factors (ft1 and ft2)
are estimated by four methods: PCA, PPCA, QFA and QPPCA at τ = 0.5. The reported results are
the average Frobenius errors: ∥F̂ −FĤ∥/

√
T from 1000 repetitions, where Ĥ is the associated rotation

matrix for each estimator.
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Figure 3: Loading function of the first characteristic when error term is N(0, 1)

Note: the DGP is: yit = λi1ft1+(λi2ft2)uit, where ft2 = |gt| and ft1, gt ∼ i.i.d N(0, 1). n = 500, T = 10.
The number of characteristics is 2 and all characteristics xid (i = 1, ...N and d = 1, 2) are independently
drawn from uniform distribution: U [−1, 1]. g11(x) = sin(2πx), g21(x) = 0, g12(x) = sin(πx), g22(x) =
cos2(πx), and λi1 = g11(xi1) + g12(xi2), λi2 = g21(xi1) + g22(xi2). uit are drawn independently from the
standard normal distribution. The left panel are the estimation results for g11,τ (x) = sin(2πx) and the
right panel are the estimation results for g21,τ (x) = 0 with τ ∈ {0.25, 0.75}. For each graph, the blue line
is the true function, the red line and the green line are the 95% and 5% empirical quantiles from 1000
replications.
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Figure 4: Loading function of the second characteristic when error term is N(0,1)

Note: the DGP is: yit = λ1if1t+(λ2if2t)uit, where f2t = |gt| and f1t, gt ∼ i.i.d N(0, 1). n = 500, T = 10.
The number of characteristics is 2 and all characteristics xid (i = 1, ...N and d = 1, 2) are independently
drawn from uniform distribution: U [−1, 1]. g11(x) = sin(2πx), g21(x) = 0, g12(x) = sin(πx), g22(x) =
cos2(πx), and λ1i = g11(x1i) + g12(x2i), λ2i = g21(x1i) + g22(x2i). uit are drawn independently from the
standard normal distribution. The left panel are the estimation results for g12,τ (x) = sin(πx) and the
right panel are the estimation results for g22,τ (x) with τ ∈ {0.25, 0.75}. For each graph, the blue line
is the true function, the red line and the green line are the 95% and 5% empirical quantiles from 1000
replications.
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Figure 5: Loading function of first characteristic when error term is t(3)

Note: the DGP is: yit = λi1ft1+(λi2ft2)uit, where ft2 = |gt| and ft1, gt ∼ i.i.d N(0, 1). n = 500, T = 10.
The number of characteristics is 2 and all characteristics xid (i = 1, ...N and d = 1, 2) are independently
drawn from uniform distribution: U [−1, 1]. g11(x) = sin(2πx), g21(x) = 0, g12(x) = sin(πx), g22(x) =
cos2(πx), and λi1 = g11(xi1) + g12(xi2), λi2 = g21(xi1) + g22(xi2). uit are drawn independently from
the student’s t distribution with 3 degrees of freedom. The left panel are the estimation results for
g11,τ (x) = sin(2πx) and the right panel are the estimation results for g21,τ (x) = 0 with τ ∈ {0.25, 0.75}.
For each graph, the blue line is the true function, the red line and the green line are the 95% and 5%
empirical quantiles from 1000 replications.
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Figure 6: Loading function of second characteristic when error term is t(3)

Note: the DGP is: yit = λi1ft1+(λi2ft2)uit, where ft2 = |gt| and ft1, gt ∼ i.i.d N(0, 1). n = 500, T = 10.
The number of characteristics is 2 and all characteristics xid (i = 1, ...N and d = 1, 2) are independently
drawn from uniform distribution: U [−1, 1]. g11(x) = sin(2πx), g21(x) = 0, g12(x) = sin(πx), g22(x) =
cos2(πx), and λi1 = g11(xi1) + g12(xi2), λi2 = g21(xi1) + g22(xi2). uit are drawn independently from
the student’s t distribution with 3 degrees of freedom. The left panel are the estimation results for
g12,τ (x) = sin(πx) and the right panel are the estimation results for g22,τ (x) with τ ∈ {0.25, 0.75}. For
each graph, the blue line is the true function, the red line and the green line are the 95% and 5% empirical
quantiles from 1000 replications.
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Figure 7: Estimated loading functions using QPPCA for different quantiles
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Note: This figure plots the estimated quantile factors at different quantiles using QPPCA.
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Figure 8: Estimated loading functions using PPCA and QPPCA for τ = 0.5
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Note: this figure plots the estimated quantile factor loading functions of the four characteristics
using PPCA and QPPCA at τ = 0.5
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Figure 9: Estimated loading functions using QPPCA for different quantiles
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Note: This figure plots the estimated quantile factor loading functions of the four characteristics
using QPPCA at different τs.
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