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The order of integration is valid to characterize linear processes; but it is not appropriate for non-linear
worlds. We propose the concept of summability (a re-scaled partial sum of the process being Op(1)) to
handle non-linearities. The paper shows that this new concept, S (δ): (i) generalizes I (δ); (ii) measures
the degree of persistence as well as of the evolution of the variance; (iii) controls the balancedness
of non-linear relationships; (iv) opens the door to the concept of co-summability which represents a
generalization of co-integration for non-linear processes. To make this concept empirically applicable, an
estimator for δ and its asymptotic properties are provided. The finite sample performance of subsampling
confidence intervals is analyzed via a Monte Carlo experiment. The paper finishes with the estimation of
the degree of summability of the macroeconomic variables in an extended version of the Nelson–Plosser
database.
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1. Introduction

No one doubts that the concepts of integration and co-
integration have been and still are very useful in time series econo-
metrics. The former by producing a single parameter that was able
to summarize the long-memory properties of a given time series.
The latter by linking the existence of common trends to long-
run linear equilibrium relationships. Thanks, amongst others, to
the work by Dickey and Fuller (1979), Nelson and Plosser (1982),
Phillips (1986), Engle and Granger (1987) and Johansen (1991),
these two concepts are easily handled theoretically as well as em-
pirically.

In parallel, non-linear time series models from a stationary
perspective were introduced in the literature—see Granger and
Teräsvirta (1993), Franses and van Dijk (2000), Fan and Yao (2003),
and Teräsvirta et al. (2010) for some overviews. The introduction of
persistent variables into non-linear models – see Park and Phillips
(1999, 2001), de Jong and Wang (2005) or Pötscher (2004) for the
study of transformations of integrated processes – produced a nat-
ural query: Which is the order of integration of these non-linear
transformations? Such a question does not have a clear answer
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since the existing definitions of integrability do not properly ap-
ply. Integration is a linear concept.

This lack of definition has at least two important worrying con-
sequences. First, in univariate terms, it implies that an equivalent
synthetic measure of the stochastic properties of the time series,
such as the order of integration, is not available to characterize
non-linear time series. As pointed out by Granger (1995), this does
not only affect econometricians but also economic theorists who
need to account for important characteristics of economic variables
to construct their theories. Second, from a multivariate perspec-
tive, it becomes troublesome to determine whether a non-linear
model is balanced or not. Unbalancedness is a symptom of a mis-
specified model, a feature that is easily likely to occur when man-
aging non-linear transformations of persistent variables. In linear
setups, the concept of integrability did a good job dealing with bal-
anced/unbalanced relations. However, in non-linear frameworks,
the non-existence of a synoptic quantitative measure makes it dif-
ficult to check the balancedness of a postulated model.

Additionally, this implies that a definition for non-linear co-
integration is difficult to be obtained from the usual concept of in-
tegrability. To clarify this point, suppose yt = f (xt , θ) + ut , where
xt ∼ I(1) and ut ∼ I(0). For f (·) non-linear, the order of integra-
tion of f (xt , θ), and hence that of yt , may not be properly defined
implying that the standard concept of co-integration is difficult to
be applied. In fact, the literature on non-linear co-integration – see
Park and Phillips (2001), Karlsen et al. (2007), Wang and Phillips
(2009) – undertakes thewhole analysis assuming the existence of a
long-run relationship; something that should be tested in practice.
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It was already stated in Granger and Hallman (1991) that ex-
tensions of the linear concepts I(0) and I(1) are needed to gener-
alize co-integration to non-linear frameworks. This has led some
authors to introduce alternative definitions. For instance, Granger
(1995) proposed the concepts of Extended and Short Memory in
Mean. However, these concepts are neither easy to calculate nor
general enough to handle some types of non-linear long run re-
lationships. And, furthermore, a measure of the order of the ex-
tended memory is not available. Dealing with threshold effects
in co-integrating regressions, Gonzalo and Pitarakis (2006) faced
these problems and proposed, in a very heuristic way, the concept
of summability (a re-scaled partial sumof the process beingOp(1)).
However, they did not emphasize the avail of such an idea.

In this paper, we define summability properly and show its use-
fulness and generality. Specifically, we put forward several rele-
vant examples in which the order of integrability is difficult to be
established, but the order of summability can be easily determined.
Moreover, we show that integrated time series are particular cases
of summable processes, in the sense that the order of summa-
bility is the same as the order of integration. Hence, summabil-
ity is a generalization of integrability. Furthermore, summability
does not only characterize some properties of univariate time
series, but also allows to easily study the balancedness of a postu-
lated relationship —linear or not. And even more important, non-
linear long run equilibrium relationships between non-stationary
time series can be properly defined. In particular, the concept of
co-summability, which can be applied to extend co-integration to
non-linear frameworks, is developed by the authors in Berenguer-
Rico and Gonzalo (2013).

Tomake this concept empirically operational, we propose a sta-
tistical procedure to estimate and carry out inferences on the order
of summability of an observed time series. This makes useful the
concept of summability not only in theory but also in practice. To
estimate the order of summability, we use an estimator introduced
byMcElroy and Politis (2007) to analyze the rate of convergence of
a statistic which is obtained from a simple least squares regres-
sion. The inference on the true order of summability is based on
the subsampling methodology developed in Politis et al. (1999). It
is shown, by simulations, that the subsampling machinery works
reasonably well in finite samples given the generality of the ap-
proach. Finally, the proposed methodology is used to estimate the
order of summability of the macroeconomic time series in an ex-
tended version of the Nelson–Plosser database.

The paper is organized as follows. In the next section, the
problems of using the order of integration to characterize non-
linear processes are highlighted. In Section 3, our proposed solu-
tion based on summability is described and its simple applicability
showed. Section 4 describes the statistical tools – estimation and
inference – to deal empirically with summable processes. In Sec-
tion 5, an empirical application shows how to determine the order
of summability in practice. Finally, Section 6 is devoted to some
concluding remarks. All proofs are collected in the Appendix.

A word on notation. We use the symbol ‘‘H⇒’’ to signify
convergence in distribution and weak convergence indistinctly,
‘‘

p
−→’’ to signify convergence in probability. Stochastic processes
such as the standard Brownian motion W (r) are defined on [0, 1].
Finally, all limits given in the paper are taken as the sample size
n → ∞.

2. Order of integration and non-linear processes

2.1. Order of integration

Definition 1. A stochastic process {yt : t ∈ N} is said to be an
integrated process of order d (in short, an I(d) process) if the
process of dth order differences ∆dyt is I(0).
A natural question that arises after reading this definition is:
And what is an I(0) process? Attempts to give a formal description
of I(0) processes exist in the literature. Engle and Granger (1987)
give the following characterization.

Engle and Granger (EG) Characterization. If yt ∼ I(0) with zero
mean then (i) the variance of yt is finite; (ii) an innovation has only
a temporary effect on the value of yt ; (iii) the spectrum of yt , f (ω),
has the property 0 < f (0) < ∞; (iv) the expected length of time
between crossing of x = 0 is finite; (v) the autocorrelations, ρk,
decrease steadily in magnitude for large enough k, so that their sum is
finite.

Other characterizations have been used as well. Granger (1995)
and Johansen (1995) used autoregressive and moving average
representations, respectively. Müller (2008) and Davidson (2009)
– among others – define an I(0) as a process that satisfies the
functional central limit theorem (FCLT). These latter definitions
share the same spirit of our summability definition in Section 3.
Nevertheless, in all cases, differences must be taken to discover
the order of integration and the intrinsic linearity of the difference
operator makes it difficult, if not impossible, to characterize
– among others – non-linear processes. Integration is a linear
concept.

2.2. Examples

Example 1. Alpha Stable i.i.d. Distributed Processes

Let yt be i.i.d. from some distribution F ∈ D (α), where D (α)
denotes the domain of attraction of an α-stable law with α ∈

(0, 2]. yt is strictly stationary; however, its second moments may
not exist. The fact that such a process is i.i.d. could incline to think
that this process is I(0). However, if second moments do not exist,
EG characterization does not apply. Characterizations based on
the FCLT could not be used either since they assume a standard
Brownian motion in the limit. Hence, it becomes troublesome to
establish the order of integration of yt .

Example 2. An i.i.d. plus a Random Variable

Consider the following process

yt = z + et , (1)

where z ∼ N(0, σ 2
z ) and et ∼ i.i.d.(0, σ 2

e ) are independent of each
other. This process has the following properties:

(i) E[yt ] = 0
(ii) V [yt ] = σ 2

z + σ 2
e

(iii) γy(k) = Cov(yt , yt−k) = σ 2
z for all k > 0.

Since it is a strictly stationary process, one could think that
it is I(0). However, the autocovariance function is not absolutely
summable and its spectrumdoes not satisfy the required condition
in EG characterization.1If yt is not I(0), to attach any other order
of integration to this stochastic process is not obvious. It is
controversial to say yt is I(1) since ∆yt = ∆et is generally
understood as an I(−1); and it becomes difficult to choose any
other number using the above definition of order of integration.

Dealing with non-linear processes similar problems are faced.

1 The autocovariance of the process in this example can be expressed as

γ (h) =

 π

−π

eihλ


σ 2
z + σ 2

e

2π
+

σ 2
z

π

∞
h=1

cos(λh)


dλ.

Then, the spectral density is

f (λ) =
σ 2
z + σ 2

e

2π
+

σ 2
z

π

∞
h=1

cos(λh),

which diverges for all λ.
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Example 3. Product of i.i.d. and RandomWalk

Let

wt = πtηt , (2)

where ηt ∼ i.i.d. (0, 1) and

πt = πt−1 + εt , (3)

with π0 = 0 and εt ∼ i.i.d.(0, σ 2
ε ) independent of ηt . Some

properties of wt are:
(i) E[wt ] = 0
(ii) V [wt ] = σ 2

ε t
(iii) γw(h) = E[wtwt−h] = 0.
It is not obvious to attach an order of integration to this process.

On the one hand, the uncorrelation property (iii) could incline to
think that wt is I(0). However, an I(0) cannot have a trend in the
variance according to EG characterization. On the other hand, this
unbounded variance could induce to suspect that the process is
I(1). Nevertheless, its first difference

∆wt = πtηt − πt−1ηt−1,

cannot be I(0) since, again,

V [∆wt ] = E[(πtηt)
2
] + E[(πt−1ηt−1)

2
] − 2E[πtπt−1ηtηt−1]

= (2t − 1)σ 2
ε .

This means that wt cannot be I(1). It cannot be I(2) either, since
the variance of the second difference is

V [∆2wt ] = E[(πtηt)
2
] + 4E[(πt−1ηt−1)

2
] + E[(πt−2ηt−2)

2
]

= 6(t − 1)σ 2
ε .

In fact, this process can be considered to be I (∞), in the sense that
the variance of∆dwt depends on t regardless of the value of d—see
Yoon (2005).

As pointed out byGranger (1995), non-linear transformations of
highly heterogeneous or volatile processes, although uncorrelated,
can induce high correlations. This can be seen by analyzing

qt = πtη
2
t , (4)

where πt and ηt are defined as before. The only difference is that
now the i.i.d. sequence,η2

t , is always positive. However, in this case,

E[qt ] = E[πtη
2
t ] = 0,

V [qt ] = E[q2t ] = E[π2
t η4

t ] = E[π2
t ]E[η4

t ] = tσ 2
ε µ4,

and

γq(h) = E[qtqt−h] = E[πtπt−hη
2
t η

2
t−h]

= E[πtπt−h]E[η2
t η

2
t−h] = (t − h)σ 2

ε σ 4
η ,

where µ4 = E[η4
t ]. Now both variance and covariance depend

on time. Hence, it can be seen how non-linear transformations of
highly heterogeneous processes can have an important impact on
their stochastic properties. This impactwill be hardly accounted by
the order of integration.

Example 4. Square of a RandomWalk

Consider now the square of the random walk defined in (3),

π2
t = π2

t−1 + 2πt−1εt + ε2
t . (5)

To establish the order of integration of this process is again not
an obvious task. Granger (1995) considers that π2

t can be seen as
a random walk with drift, hence, one could think that π2

t is I(1).
However,

V [π2
t − π2

t−1] = E[ε4
t ] + 4(t − 1)σ 4

ε − σ 4
ε .

Again, EG characterization cannot be applied to ∆π2
t or ∆dπ2

t .
Example 5. Product of Indicator Function and RandomWalk

Let
ht = 1(vt ≤ γ )πt , (6)
where vt is i.i.d. (0, 1), 1(·) is the indicator function, and πt is the
random walk defined in (3). vt and εt are independent of each
other. The variance and autocovariances of ht depend on time,
hence, one would think that it is I(1). However, again, the variance
of the first difference
V [∆ht ] = V [1(vt ≤ γ )πt − 1(vt−1 ≤ γ )πt−1]

= [2p(1 − p)σ 2
ε ]t + p(2p − 1)σ 2

ε ,

where p = Pr (vt ≤ γ ). In fact, it can be considered, once again,
that ht ∼ I (∞).

Example 6. Park and Phillips (1999, 2001)

Similar incongruities to those encountered in previous exam-
ples appear when dealing with the non-linear transformations of
I(1) processes studied in Park and Phillips (1999, 2001); for in-
stance, e−π2

t , 1/(1 + π2
t ), log(|πt |), or (1 + e−πt )−1.

Example 7. Stochastic Unit Root and Explosive Processes

Consider, on the one hand, a stochastic unit root process
yt = ρtyt−1 + εt , (7)
where y0 = 0 and ρt ∼ i.i.d.(ρ, ω2) is independent of εt ∼

i.i.d.(0, σ 2
ε ). On the other hand, let zt be the following explosive

process
zt = φzt−1 + ξt , (8)
with z0 = 0, φ > 1 and ξt ∼ i.i.d.(0, σ 2

ξ ). As in previous examples,
to determine the order of integration of yt and zt is troublesome.

In all these examples the order of integrability is difficult to
be calculated. The standard I(d) classification is not sufficient to
handle many stochastic processes.

3. A solution based on summability

3.1. Order of summability

The idea of order of summability of a stochastic processwas ini-
tially introduced in a heuristic way in Gonzalo and Pitarakis (2006)
when dealing with threshold effects in co-integrating regressions.
In this section, the concept of summability is formalized and its
generality, usefulness, and simplicity are asserted.

Definition 2. A stochastic process {yt : t ∈ N} is said to be
summable of order δ, or S(δ), if there exist a slowly-varying
function2 L(n) and a deterministic sequencemt such that

Sn =
1

n
1
2 +δ

L(n)
n

t=1

(yt − mt) = Op(1), (9)

where δ is the minimum real number that makes Sn bounded in
probability.

Remark. When E [yt ] exists, mt = E [yt ]; however, when this is
not the casemt will be case dependent. For instance, in Example 1,
mt = 0 ifα ∈ (0, 1) orα = 1 and F is symmetric.With respect to δ,
when possible, it will be determined by some Central Limit result.
For instance, a standard Central Limit Theorem – CLT – produces

2 A positive, Lebesgue measurable function L, on (0, ∞) is slowly varying – in
Karamata’s sense – at ∞ if

L(λn)
L(n)

→ 1 (n → ∞) ∀λ > 0.

(See Embrechts et al., 1999, p. 564).
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δ = 0 and L(n) just a constant. If the process is a random walk, by
the Functional Central Limit Theorem – FCLT – and the Continuous
Mapping Theorem – CMT –, δ = 1 and L(n) is again a constant
term. Although, in many circumstances L(n) will be constant, in
some situations3 the asymptotic theory will force us to use an L
function varying with n but slowly in Karamata’s sense.

From a more general perspective, the relationship between
integrability and summability is discussed in the following two
propositions.

Assumption 1. Let yt be the I (d) process ∆dyt = C (L) ut , where
ut = εt1 (t > 0). εt has zero mean, is i.i.d., and E |εt |

r < ∞ for
r ≥ 4. In addition, C (L) =


∞

j=0 cjL
j satisfies C (1) ≠ 0 and

∞

j=1 j
cj < ∞.

Proposition 1. Under Assumption 1 if the time series yt is I(d) with
d ≥ 0, then it is S(d).

Next proposition deals with processes with negative orders of
integration.

Proposition 2. Under Assumption 1 if the time series yt is I(−d)with
d = 1, 2, . . . < ∞, then it is S(−0.5).

Since negative orders of integration are not very relevant, only
d ≥ 0 will be considered. Hence, I (d) processes are S (d).

3.2. Examples

For all processes considered in Examples 1–7 the order of
integration was not possible to be established. Next, for these
examples, it is shown that the order of summability can be easily
obtained.

Summability in Example 1 (α-Stable i.i.d. Process). Let yt be
symmetric around zero. By the Generalized Central Limit Theorem

Sn =
1

n
1
α

L(n)
n

t=1

yt H⇒ Sα,

where Sα ∼ F ∈ D (α). Hence, in this case the time series is said
to be summable of order δ = (2 − α)/2α. For instance, a Cauchy
distributed process (α = 1) is S(0.5).

Summability in Example 2 (An i.i.d. Plus a RandomVariable). From
(1)

Sn =
1
n

n
t=1

yt =
1
n

n
t=1

(z + et) = z +
1
n

n
t=1

et H⇒ z.

Therefore, yt is S(0.5).

Summability in Example 3 (Product of i.i.d. and Random Walk). It
can be shown – see for instance Park and Phillips (1988) – that

Sn =
1

σεn

n
t=1

πtηt H⇒

 1

0
W1(r)dW2(r).

This means πtηt is S(0.5) with, for instance, L(n) = 1/σε .

3 Consider the case where the process yt has density f (x) = 1/ |x|3 for |x| > 1.
In that case, it is known (e.g. Romano and Siegel, 1986, Example 5.47) that

1
[n log n]1/2

n
t=1

yt H⇒ N(0, 1).

Then, L(n) = (1/ log n)1/2 .
For πtη
2
t note that,

Var


n

t=1

πtη
2
t


= O(n3).

Then, by Chebyshev’s inequality,

1
n3/2

n
t=1

πtη
2
t = Op(1),

which implies that πtη
2
t is S(1).

These two cases show that summability takes into account
persistence as well as the variance behavior through time.

Summability in Example 4 (Square of a Random Walk). It is well
known that

Sn =
1

n2σ 2
ε

n
t=1

π2
t H⇒

 1

0
W 2(r)dr.

Hence, π2
t is S(1.5) with, for instance, L(n) = 1/σ 2

ε .

Summability in Example 5 (Product of Indicator Function and Ran-
domWalk). In this case,

Sn =
1

n
3
2 pσε

n
t=1

1(vt ≤ γ )πt H⇒

 1

0
W (r)dr,

implying that 1(vt ≤ γ )πt is S(1)with, for instance, L(n) = 1/pσε .

Summability in Example 6 (Park and Phillips, 1999, 2001). The
order of summability of the processes considered in this example
can be obtained by using the asymptotic theory developed in Park
and Phillips (1999). Specifically, it can be shown that e−π2

t ∼ S(0),
1/(1+π2

t ) ∼ S(0), log(|πt |) ∼ S(0.5), and (1+ e−πt )−1
∼ S(0.5).

Summability in Example 7 (STUR and Explosive Processes). Con-
sider the STUR process defined in (7). For simplicity, let ρt ∼

i.i.d.(1, 1), i.e. set ρ = ω2
= 1. From Leybourne et al. (1996), it

can be shown that

Sn =
1

2n/2

n
t=1

yt = Op (1) .

With respect to the explosive process (8), fromWhite (1958)

Sn =
1
φn

n
t=1

zt = Op (1) .

Strictly speaking, the order of summability of yt and zt will be ∞.
These are cases of non-summable processes.

3.3. Some uses of summability

In the same way integration constitutes the first step to check
balancedness of a linear relationship and to analyze co-integration,
summability can be used to study non-linear long run relation-
ships.

Definition 3. A postulated relationship

yt = f (xt , θ) ,

is said to be balanced if yt ∼ S

δy

, f (xt , θ) ∼ S


δf

, and δy = δf .

Once balancedness of a non-linear model is established, the
analysis of non-linear long run relationships can be done using the
concept of co-summability.
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Definition 4. Two summable stochastic processes, yt ∼ S

δy

and

xt ∼ S (δx), are said to be co-summable if there exists f (xt , θ) ∼

S

δy

such that ut = yt − f (xt , θ) is S(δu), with δu = δy − δ and

δ > 0. In short, (yt , xt) ∼ CS(δy, δ).

Co-summable processes will share an equilibrium relationship
in the long run, i.e. an attractor yt = f (xt , θ) that can be linear
or not. This type of equilibrium relationships will be usually es-
tablished by the economic theory and have significant economet-
ric applications such as, for instance, transition between regimes,
multiplicity of equilibria, polynomial approximations to unknown
functions or non-linear responses to policy interventions. Applied
researchers are often interested on estimating and testing for these
type of equilibria. A full treatment of co-summability in a re-
gression framework can be found in Berenguer-Rico and Gonzalo
(2013) and Berenguer-Rico (2013).

4. Summability in practice: estimation and inference

Following the same logic as in the integrated world, before any
multivariate analysis, i.e. balancedness and co-summability, it is
necessary to develop the estimation and inference tools for the
order of summability, δ, of univariate processes.

4.1. Estimation of δ

In this section, for simplicity reasons, it will be assumed L (n) =

1 inDefinition 2. Therefore, the summability condition (9) becomes

Sn =
1

n
1
2 +δ

n
t=1

(yt − mt) = Op(1). (10)

In addition, the next assumption is needed to implement our
proposed estimation method of δ.

Assumption 2. P (Sn = 0) = 0 for all n = 1, 2, 3, . . . .

Under Assumption 2 and following McElroy and Politis (2007),
for a stochastic process yt satisfying (10),

Un = log S2n = log

n−(1+2δ)


n

t=1

(yt − mt)

2
 = Op(1). (11)

Expression (11) can be written in regression model form as
follows
Yk = β log k + Uk, k = 1, 2, . . . , n, (12)

where β = 1 + 2δ, Yk = log
k

t=1(yt − mt)
2

, and Uk = Op(1).
We propose to estimate β by

β̂ =

n
k=1

Yk log k

n
k=1

log2 k
. (13)

Given that β = 1 + 2δ, the OLS estimator of δ is

δ̂ =
β̂ − 1

2
.

4.2. Asymptotic properties

From (12) and (13)

β̂ − β =

n
k=1

Uk log k

n
k=1

log2 k
. (14)
Proposition 3 (McElroy and Politis, 2007).Under Assumption 2, β̂−

β = op(1).

Remark. McElroy and Politis (2007) show that β̂ is consistent
underminimal assumptions. In our context, these assumptions are
satisfied by definition of summable processes. Nonetheless, to the
best of our knowledge, an asymptotic distribution for β̂ has not yet
been derived. The following proposition addresses this issue.

Proposition 4. Under Assumption 2, if

1
n

n
k=1

Uk H⇒ DU and
1
n

n
k=1

|Uk|
p

= Op (1) , (15)

for some 1 < p < ∞ and DU a random variable, then

log n(β̂ − β) H⇒ DU . (16)

Remark. As shown in McElroy and Politis (2007) boundedness
in probability of Uk suffices to get a consistent estimate of β .
Nevertheless, to perform inferences on β , extra distributional
assumptions, such as those in (15), need to be imposed. Let xt =

yt − mt and notice that

1
n

n
k=1

Uk =
1
n

n
k=1

log S2k

= −
(1 + 2δ)

n

n
k=1

log

k
n



+
1
n

n
k=1

log

 1
n1/2+δ

k
t=1

xt

2
 .

For the case when xt is i.i.d.(0, 1), following Pötscher (2004), de
Jong (2004) or Berkes and Horváth (2006),

1
n

n
k=1

Uk H⇒ 1 +

 1

0
log


W 2 (r)


dr and

1
n

n
k=1

|Uk|
p

= Op (1) .

Similarly, if xt is a standard random walk, then from Berkes and
Horváth (2006),

1
n

n
k=1

Uk H⇒ 3 +

 1

0
log

 r

0
W (r)dr

2

dr and

1
n

n
k=1

|Uk|
p

= Op (1) .

Remark. In many cases, L (n) ≠ 1 but still L (n) = c , a constant
different from zero. In such a case, regression (12) becomes

Yk = α + β log k + Uk, (17)

with α = −2 log c . Notice that any c satisfies Definition 2. There-
fore, α is not identified. Nevertheless, it is straightforward to get
rid of it by subtracting the first observation in regression (17) and
estimating the model

Y ∗

k = β log k + U∗

k , (18)
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Table 1
Data generating processes: yt = mt + xt .

y1t = mt + εt , εt ∼ iid N(0, 1) y7t = mt + ∆0.3πt

y2t = mt + πt , πt =
t

j=1 εj y8t = mt + z + εt , z ∼ N(0, 1)⊥εt

y3t = mt +
t

j=1 πj y9t = mt + ηtπt , ηt ∼ iid N(0, 1)⊥εt
y4t = mt + ξt , ξt ∼ iid Cauchy y10t = mt + η2

t πt , ηt ∼ iid N(0, 1)⊥εt
y5t = mt + π2

t y11t = mt + 1(vt ≤ 0)πt ,
vt ∼ iid N(0, 1)⊥εt

y6t = mt + tεt y12t = mt + log (|πt |)

where Y ∗

k = Yk−Y1 andU∗

k = Uk−U1. Themodified OLS estimator

β̂∗
=

n
k=1

Y ∗

k log k

n
k=1

log2 k
,

satisfies the same asymptotic properties than those of β̂ .
An alternative way to take into account α could be using

β̃ =

n
k=1

(Yk − Ȳ )(log k − log n)

n
k=1

(log k − log n)2
. (19)

The lack of identification of α complicates the properties of β̃ . For
this reason, in this paper only β̂∗ is considered and consequently
δ̂∗

= (β̂∗
− 1)/2.

4.3. Subsampling confidence intervals

In general, the asymptotic distribution of β̂∗ cannot be tabu-
lated. Nevertheless, subsampling methods can be used to under-
take inferences on the order of summability independently of its
true value.

Subsampling is consistent under minimal assumptions. The
most general result shown in Politis et al. (1999) requires that:

(i) the estimator, properly normalized, has a limiting distribu-
tion,

(ii) the distribution functions of the normalized estimator based
on the subsamples (of size b) have to be on average close to the
distribution function of the normalized estimator based on the
entire sample with log b/ log n → 0, b/n → 0, b → ∞,

(iii) the sequence of the subsampling statistics Zn,b,k =

log b(β̂∗

n,b,k − β), where β̂∗

n,b,k is the subsample estimator
version of β̂∗, has α-mixing coefficients, αn,b(h), such that
n−1n

h=1 αn,b(h) → 0 as n → ∞.
Conditions (i) and (ii) are guaranteed by Proposition 4. To show

that the α-mixing condition (iii) holds in this context is beyond
the scope of this paper. The adequacy of the subsampling approach
is analyzed via simulations using the twelve data generating
processes – DGP – in Table 1.

Performance of subsampling is mainly measured by coverage
probability, denoted by CP , of two-sided nominal 95% symmetric
intervals for δ. We also present the mean of the estimated δ′s and
the median lower and upper bounds of the estimated confidence
intervals. These measures are denoted by δ̄∗, Ilow , and Iup, respec-
tively. The experiment is based on 1000 replicas and three different
sample sizes n = {100, 200, 500}. Subsample size is b =

√
n. Re-

sults are collected in Table 2.
The performance of the subsampling method is adequate in

general.4 The coverage probability is around its nominal level and

4 Notice that the coverage probability for cases 11 and 12 is poor. Nonetheless,
the consideration of deterministic components improves dramatically the coverage
probability, as it can be seen in Tables 3 and 4.
the mean estimated order of summability close to its true value.
The subsampling confidence intervals, although wide, get nar-
rower as the sample size increases. The amplitude of the intervals
in small samples is basically a direct consequence of not assuming
any knowledge about the DGP of the analyzed time series.

4.4. Deterministic components

Until now mt has been assumed to be known, but this is not
the case in practice. As in the integrated world, the presence of
deterministic components can affect the estimation of the order
of summability.

Let

yt = mt + xt ,

where

1
n1/2+δ

n
t=1

xt H⇒ Dx and
1

n1/2+γ

n
t=1

mt → µ,

with Dx being a random variable with positive variance and µ a
constant different from zero.

Consider the following two situations:
a. If δ > γ , then

1
n1/2+δ

n
t=1

yt =
1

n1/2+δ

n
t=1

xt + o(1) H⇒ Dx.

b. If δ < γ , then

1
n1/2+γ

n
t=1

yt =
1

n1/2+γ

n
t=1

mt + op(1)
p

→ µ.

When δ < γ , the order of the deterministic component dom-
inates and it will be confused with the order of summability. Ad-
mittedly, even when δ > γ , the deterministic components, if not
properly considered, can affect the order of summability esti-
mation in finite samples. Although not reported here, for space
reasons, Monte Carlo experiments reveal the existence of an im-
portant bias effect when deterministic components are present
and not properly taken into consideration. Therefore, in order to
analyze the order of summability a proper technique to deal with
these elements is needed.

Essentially, what is required is an estimator m̂t such that

1

n
1
2 +δ

n
t=1


yt − m̂t


= Op (1) . (20)

In other words, the order of summability of yt is not affected by
subtracting m̂t .

Three usual parametric forms for mt will be considered: mt =

m0, mt = m0 + m1t , and mt = m0 + m1t + m2t2. For these
three cases, a proper treatment of the deterministic components
is derived.

Constant term case: Let

yt = m0 + xt ,

where m0 is a constant and xt ∼ S(δ) such that

1

n
1
2 +δ

n
t=1

xt = Op (1) .

Assume that only yt is observed. The standard proposal of
demeaning yt by its arithmetic mean is problematic in this context
because

n
t=1

(yt − ȳ) = 0. (21)



V. Berenguer-Rico, J. Gonzalo / Journal of Econometrics 178 (2014) 331–341 337
Table 2
Performance of subsampling intervals for δ. No deterministic components:mt = 0.

DGP CP δ̄∗ Ilow Iup CP δ̄∗ Ilow Iup CP δ̄∗ Ilow Iup

S(δ) n = 100 n = 200 n = 500

1 – S(0) 0.991 −0.004 −0.699 0.659 0.995 0.005 −0.607 0.566 0.991 0.000 −0.521 0.470
2 – S(1) 0.832 0.863 0.383 1.307 0.804 0.880 0.455 1.258 0.807 0.900 0.541 1.220
3 – S(2) 0.747 1.634 0.982 2.262 0.797 1.673 1.034 2.292 0.863 1.723 1.076 2.348
4 – S(0.5) 0.986 0.496 −0.414 1.387 0.992 0.521 −0.261 1.309 0.994 0.519 −0.185 1.187
5 – S(1.5) 0.905 1.516 0.701 2.192 0.900 1.519 0.771 2.107 0.904 1.510 0.828 2.049
6 – S(1) 0.990 0.862 −0.052 1.694 0.997 0.891 0.028 1.675 1.000 0.899 0.096 1.635
7 – S(0.7) 0.939 0.613 0.038 1.135 0.954 0.627 0.141 1.054 0.949 0.639 0.223 0.998
8 – S(0.5) 0.942 0.430 −0.213 1.007 0.929 0.401 −0.149 0.915 0.930 0.447 −0.024 0.875
9 – S(0.5) 0.988 0.507 −0.330 1.255 0.984 0.516 −0.206 1.164 0.983 0.501 −0.144 1.063
10 – S(1) 0.947 1.171 −0.106 2.311 0.952 1.167 0.099 2.127 0.954 1.124 0.220 1.894
11 – S(1) 0.598 0.689 0.220 1.104 0.644 0.743 0.325 1.140 0.650 0.767 0.389 1.105
12 – S(0.5) 0.844 0.557 0.041 0.977 0.801 0.630 0.196 0.988 0.705 0.694 0.353 0.982

CP denotes the coverage probability of two-sided nominal 95% symmetric intervals. δ̄∗ represents the mean of the estimated orders of summability. Ilow and Iup are the
median of the lower and upper bounds of the intervals, respectively. 1000 replicas are used. Subsample size is b =

√
n.
Therefore, the true order of summability cannot be recovered. Next
proposition shows that the partial mean

m̂t =
1
t

t
j=1

yj,

is an alternative operational choice in the sense of satisfying (20).

Proposition 5. Consider the constant term case DGP

yt = m0 + xt , (22)

where m0 is an unknown constant and

1

n
1
2 +δ

n
t=1

|xt | = Op (1) .

If

m̂t =
1
t

t
j=1

yj, (23)

then (yt − m̂t) ∼ S(δ).

Table 3 reports the performance of subsampling confidence
intervals after partially demeaning the processes described in
Table 1 when mt = m0 = 10. Results do not depend on the value
ofm0.

Results are similar or even better than those obtained without
deterministic components. For this reason, we recommend to
always partially demean the processes.

Linear trend case: Let

yt = m0 + m1t + xt ,

where xt ∼ S(δ). Next proposition shows how to deal with the
deterministic components in this case.

Proposition 6. Consider the linear trend case DGP

yt = m0 + m1t + xt , (24)

where m0 and m1 are two unknown constants and

1

n
1
2 +δ

n
t=1

|xt | = Op (1) .

If

m̂t =
1
t

t
j=1

yj −
2
t

t
j=1


yj −

1
j

j
i=1

yj


, (25)

then (yt − m̂t) ∼ S(δ).
Note that in the linear trend case, the appropriate m̂t consists,
basically, in a double partial demeaning procedure.5 Table 4
summarizes the performance of subsampling confidence intervals
after properly detrending the DGPs in Table 1 when mt = m0 +

m1t = 10 + 2t . As in the previous case, results do not depend on
the particular choices ofm0 and m1.

Results in Table 4 show that the proposed detrending method
m̂t performs adequately in finite samples.

Quadratic trend case: Let

yt = m0 + m1t + m2t2 + xt ,

where xt ∼ S (δ) andm0,m1, andm2 are three unknown constants.
The proposed m̂t in this case is

m̂t =
1
t

t
j=1

yj −
2
t

t
j=1


yj −

1
j

j
i=1

yi



−
3
t

t
j=1


yj −

1
j

j
i=1

yi −
2
j

j
i=1


yi −

1
i

i
h=1

yh


.

Essentially, this transformation implies a triple partial demeaning
procedure. It can be shown that the use of this m̂t does not alter the
order of summability of yt − m̂t and the finite sample performance
is adequate (these results are available from the authors upon
request).

Remark. It can be shown that if the order of the trend that is sub-
tracted is higher than the true one, then the order of summabil-
ity of the detrended process, yt − m̂t , is preserved; that is, it has
the same order of summability that yt . However, because of ineffi-
ciency issues, in general, it is not recommended to subtract a very
high polynomial trend.

Overall, the methodology proposed in this section to estimate
the order of summability works reasonably well in finite samples.
It is important to notice that our method does not assume any
knowledge about the model generating the data. The trade off is
that the confidence intervals are not very narrow.

5 Other proper detrending procedures work too. We thank Franco Peracchi
for pointing out the alternative methodology of applying a partial OLS detrend-
ing, i.e. m̂t = α̂t + β̂t t where α̂t = (1/t)

t
j=1 yj − β̂t (1/t)

t
j=1 j and β̂t =t

j=1


yj − (1/t)

t
j=1 yj

 
j − (1/t)

t
j=1 j


/
t

j=1


j − (1/t)

t
j=1 j

2
. This

choice will be particularly interesting when fractional deterministic trends are
present.



338 V. Berenguer-Rico, J. Gonzalo / Journal of Econometrics 178 (2014) 331–341
Table 3
Performance of subsampling intervals for δ. Constant term: mt = 10.

DGP CP δ̄∗ Ilow Iup CP δ̄∗ Ilow Iup CP δ̄∗ Ilow Iup

S(δ) n = 100 n = 200 n = 500

1 – S(0) 0.982 0.085 −0.613 0.720 0.984 0.072 −0.523 0.618 0.987 0.061 −0.443 0.515
2 – S(1) 0.896 0.838 0.232 1.339 0.885 0.878 0.346 1.322 0.882 0.894 0.453 1.286
3 – S(2) 0.698 1.608 0.971 2.208 0.792 1.655 0.996 2.262 0.860 1.715 1.065 2.337
4 – S(0.5) 0.970 0.420 −0.424 1.185 0.969 0.443 −0.329 1.132 0.967 0.455 −0.171 1.039
5 – S(1.5) 0.752 1.208 0.378 1.956 0.788 1.266 0.506 1.957 0.814 1.305 0.624 1.920
6 – S(1) 0.981 0.775 −0.108 1.542 0.992 0.805 −0.020 1.555 0.999 0.822 0.049 1.515
7 – S(0.7) 0.970 0.582 −0.092 1.160 0.976 0.609 0.041 1.099 0.979 0.608 0.145 1.021
8 – S(0.5) 0.825 0.091 −0.594 0.736 0.707 0.071 −0.540 0.606 0.544 0.059 −0.442 0.524
9 – S(0.5) 0.985 0.398 −0.365 1.102 0.986 0.420 −0.259 1.041 0.986 0.443 −0.167 0.964
10 – S(1) 0.910 0.856 0.018 1.568 0.911 0.897 0.146 1.594 0.900 0.915 0.242 1.513
11 – S(1) 0.812 0.602 −0.134 1.291 0.831 0.667 0.008 1.278 0.841 0.711 0.123 1.271
12 – S(0.5) 0.943 0.525 −0.032 1.019 0.923 0.538 0.075 0.934 0.922 0.539 0.182 0.853

CP denotes the coverage probability of two-sided nominal 95% symmetric intervals. δ̄∗ represents the mean of the estimated orders of summability. Ilow and Iup are the
median of the lower and upper bounds of the intervals, respectively. 1000 replicas are used. Subsample size is b =

√
n.
Table 4
Performance of subsampling intervals for δ. Linear trend:mt = 10 + 2t .

DGP CP δ̄∗ Ilow Iup CP δ̄∗ Ilow Iup CP δ̄∗ Ilow Iup

S(δ) n = 100 n = 200 n = 500

1 – S(0) 0.933 0.282 −0.428 0.927 0.949 0.264 −0.359 0.831 0.953 0.228 −0.292 0.703
2 – S(1) 0.918 0.817 0.176 1.380 0.907 0.834 0.271 1.327 0.900 0.872 0.391 1.289
3 – S(2) 0.788 1.581 0.811 2.285 0.854 1.637 0.889 2.328 0.931 1.705 0.989 2.363
4 – S(0.5) 0.958 0.504 −0.274 1.174 0.965 0.501 −0.194 1.106 0.956 0.499 −0.098 1.028
5 – S(1.5) 0.726 1.096 0.329 1.816 0.755 1.144 0.433 1.818 0.799 1.198 0.539 1.790
6 – S(1) 0.973 0.727 −0.151 1.477 0.982 0.750 −0.058 1.464 0.997 0.795 0.033 1.473
7 – S(0.7) 0.978 0.616 −0.057 1.214 0.986 0.613 0.032 1.123 0.989 0.642 0.152 1.052
8 – S(0.5) 0.928 0.283 −0.429 0.929 0.912 0.273 −0.336 0.846 0.814 0.233 −0.280 0.726
9 – S(0.5) 0.985 0.456 −0.312 1.131 0.988 0.451 −0.220 1.080 0.991 0.467 −0.141 1.023
10 – S(1) 0.849 0.748 −0.047 1.436 0.858 0.770 0.055 1.411 0.865 0.805 0.150 1.393
11 – S(1) 0.794 0.621 −0.113 1.279 0.803 0.654 −0.030 1.254 0.832 0.707 0.076 1.281
12 – S(0.5) 0.928 0.559 −0.008 1.065 0.929 0.554 0.093 0.972 0.900 0.574 0.209 0.885

CP denotes the coverage probability of two-sided nominal 95% symmetric intervals. δ̄∗ represents the mean of the estimated orders of summability. Ilow and Iup are the
median of the lower and upper bounds of the intervals, respectively. 1000 replicas are used. Subsample size is b =

√
n.
5. Empirical application

After Nelson and Plosser (1982) accounted for unit root behav-
ior in almost all the fourteenUSmacroeconomic time series in their
database, many researchers have used the same dataset to confirm
or refuse their conclusions with alternative approaches. In what
follows, we contribute to this literature by applying the above de-
velopedmethodology to estimate and infer the order of summabil-
ity of the time series included in an extended version of the Nelson
and Plosser (1982) database.6 As a novelty, we do not impose any
linearity assumption.

More precisely, we estimate the order of summability of the
fourteen macroeconomic aggregates with δ̂∗

= (β̂∗
− 1)/2 and

derive the subsampling confidence intervals denoted by (I∗L , I
∗

U).
It is well known in the literature that deterministic components
are an important issue for these time series. Since the order of
the deterministic trend is unknown, we propose to use in practice
a traditional graphical device. If a trending behavior is observed,
include at least a linear trend. If the time series evolve around
a constant, consider at least a constant term. Using this device
and knowing that it is always better to subtract a higher order
trend than a lower one with respect to the true order, a quadratic
trend has been considered for all the variables but interest and
unemployment rates. Results are shown in Table 5.

Observe that the variable with the lowest order of summability
is the unemployment rate and the one with the highest the

6 The data have been downloaded from P.C.B. Phillips’ webpage.
Table 5
Order of summability. Estimation and inference.

log(variable) Order of summability
Quadratic trend δ̂∗ I∗L I∗U
Consumer price index 2.369 1.112 3.625
Employment 0.579 0.185 0.973
GNP deflator 0.900 0.168 1.631
Nominal GNP 1.031 0.557 1.505
Industrial production 0.738 0.082 1.393
GNP per capita 0.938 0.278 1.599
Real GNP 0.898 0.287 1.510
Wages 0.961 0.341 1.580
Real wages 1.070 0.320 1.821
S&P 0.702 0.121 1.283
Money 0.913 0.279 1.548
Velocity 0.576 −0.010 1.163

Linear trend δ̂∗ I∗L I∗U
Interest 0.934 0.359 1.509
Unemployment 0.162 −0.603 0.928

δ̂∗ denotes the estimated order of summability. I∗L and I∗U denote the lower and
upper bounds of the corresponding subsampling intervals.

consumer price index. On the other hand, variables like nominal
and real GNP, stock of money, wages, industrial production or S&P
share similar orders of summability, around one. The amplitude
of the confidence intervals is in line with the wide confidence
intervals reported in Stock (1991) for the largest autoregressive
root and in Arteche and Orbe (2005) for the fractional order of
integration. Notice that our methodology does not assume any
model for the data.
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Overall, the estimated orders of summability of the fourteen
macroeconomic variables seem to be quite reasonable in economic
and econometric terms. Regarding the latter aspect of the empirical
exercise, we would like to highlight the similarities of our results
with those found in the fractional literature. With respect to the
economic content of the results, as already stated, variables like
real and nominal GNP, industrial production, or nominal money
have similar orders of summability and higher than those of
unemployment or velocity of money. Additionally, in a heuristic
way, it can be seen that these results do not go against the quantity
theory of money.

6. Conclusion

Time Series Econometrics has not yet been able to properly han-
dle non-linearities with persistent variables. This is mainly due
to the fact that the concept of integration, and consequently
co-integration, is too linear and not always well defined for non-
linear processes. This lack of a proper definition has two important
multivariate consequences. First, it is not possible to characterize
the balancedness of a non-linear postulated model relating per-
sistent variables. This is a necessary condition for an appropriate
model specification. Second, co-integration cannot be directly ex-
tended to analyze non-linear long run relationships. The concept
of summability is able to solve these problems. This paper shows
how to calculate, estimate, and undertake inference on the order
of summability, δ.
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Appendix

Proof of Proposition 1. Applying the Beveridge–Nelson decom-
position as in Phillips and Solo (1992)

∆dyt = C (1) ut + ũt−1 − ũt ,

with

ũt = C̃ (L) ut =

∞
j=0

c̃jLjut =

∞
j=0

∞
k=j+1

ckut−j.

Then,

yt = C (1) ∆−dut + ∆−d ũt−1 − ũt

,

and

1
n1/2+d

n
t=1

yt = C (1)
1

n1/2+d

n
t=1

∆−dut −
1

n1/2+d
∆−dũn.

Let κ (n, d) be the slowly varying function defined in Liu (1998)

κ (n, d) =



σ 2
u Γ (1 − 2d)

(1 + 2d) Γ (1 + d) Γ (1 − d)
if d ≥ 0 and

d ≠
2k + 1

2
∀k ∈ N

σ 2
u

π
log n if d =

2k + 1
2

∀k ∈ N ∪ {0} ,
and consider

1
n1/2+d

κ (n, d)−1/2
n

t=1

yt =
1

n1/2+d
κ (n, d)−1/2

n
t=1

∆−dut

− κ (n, d)−1/2 1
n1/2+d

∆−dũn. (26)

Boundedness in probability of the first component of the right hand
side of (26) is shown in Liu (1998). Boundedness in probability of
the second term can be shown by noticing that

Var


1
n1/2+d

∆−dũn


=

1
n1+2d

Var

∆−dũn


= o (1) .

In particular, for d = 0,

Var


1
n1/2

∆−dũn


=

1
n
Var


ũn


=
1
n
σ 2
u

∞
s=0

c̃2s = o (1) ,

since


∞

j=1 j
cj < ∞. Finally, for d > 0, given that ∆−d

=
∞

i=0 aiL
i with ai = O


id−1


, we have

Var


1
n1/2+d

∆−dũn


=

1
n1+2d

Var

∆−dũn


=

1
n1+2d

Var


∞
i=0

aiũn−i



=
1

n1+2d

∞
i=0

∞
j=0

aiajCov

ũn−i, ũn−j


=

1
n1+2d

∞
i=0

ai
∞
j=0

aj
∞
s=0

c̃s
∞
p=0

c̃pσ 2
u 1 (i − j = p − s) = o (1) ,

where 1 (i − j = p − s) is the corresponding indicator function.
Hence, yt ∼ S (δ). �

Proof of Proposition 2. The sum of yt is

n
t=1

yt = C(1)
n

t=1

∆dut − ∆dũn = An − Bn,

where An = C(1)
n

t=1 ∆dut and Bn = ∆dũn. By definition of ũt ,

Bn = ∆dũn = Op(1),

for all d = 1, 2, . . . < ∞. With respect to An note that,

C(1) < ∞,

and
n

t=1

∆dut = ∆d−1
n

t=1

∆ut = ∆d−1un = Op(1),

for all d = 1, 2, . . . < ∞. Therefore,

An = C(1)
n

t=1

∆dut = Op(1),

as well. And, all together implies that

n
t=1

yt = An − Bn = Op(1),

or equivalently that yt ∼ S(−0.5). �
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Proof of Proposition 3. By Assumption 2 and definition of sum-
mable process, Uk is Op(1). Hence, Theorem 3.1 in McElroy and
Politis (2007) applies. �

Proof of Proposition 4. Expression (14) can be rewritten as

log n

β̂ − β


=

1
n log n

n
k=1

Uk log k

1
n log2 n

n
k=1

log2 k
.

The denominator satisfies

1
n log2 n

n
k=1

log2 k → 1 as n → ∞.

The numerator can be written as

1
n log n

n
k=1

Uk log k =
1

n log n

n
k=1

Uk log

k
n
n


=
1

n log n

n
k=1

Uk


log


k
n


+ log n



=
1
n

n
k=1

Uk +
1

log n


1
n

n
k=1

Uk log

k
n


.

Now, let q be such that 1/p + 1/q = 1. By Hölder’s inequality,

1
n

n
k=1

Uk log

k
n

 ≤


1
n

n
k=1

|Uk|
p

1/p

×


1
n

n
k=1

log k
n

q
1/q

,

hence,

1
n

n
k=1

Uk log

k
n


≤

1
n

n
k=1

Uk log

k
n


≤


1
n

n
k=1

|Uk|
p

1/p 
1
n

n
k=1

log k
n

q
1/q

= Op (1) ,

which implies that the numerator satisfies

1
n log n

n
k=1

Uk log k =
1
n

n
k=1

Uk + op (1) H⇒ DU .

All together gives the stated result

log n(β̂ − β) =

1
n log n

n
k=1

Uk log k

1
n log2 n

n
k=1

log2 k
H⇒ DU . �

Proof of Proposition 5. From (22) and (23)

yt − m̂t = yt −
1
t

t
j=1

yj = xt −
1
t

t
j=1

xj.

Then,

1
n1/2+δ

n
t=1


yt − m̂t


=

1
n1/2+δ

n
t=1


xt −

1
t

t
j=1

xj



=
1

n1/2+δ

n
t=1

xt


1 −

n
j=t

1
j



≈
1

n1/2+δ

n
t=1

xt (1 + log (t/n)) ,

where ‘‘≈’’means that both terms are of the same asymptotic order
in probability. Now,

P

 1
n1/2+δ

n
t=1

xt (1 + log (t/n))

 > Mε



≤ P


1

n1/2+δ

n
t=1

|xt | +
1

n1/2+δ

n
t=1

|xt ||log (t/n)| > Mε



≤ P


1

n1/2+δ

n
t=1

|xt | >
Mε

2



+ P


1

n1/2+δ

n
t=1

|xt ||log (t/n)| >
Mε

2


< ε,

whereMε ∈ (0, ∞) and ε > 0. The last inequality is obtained from
the stated assumption on |xt | and the properties of log(t/n). Hence,

1
n1/2+δ

n
t=1


yt − m̂t


= Op (1) .

By construction of m̂t , last expression is not op(1). Therefore,
yt − m̂t


is S (δ). �

Proof of Proposition 6. Let us consider the following five steps:
(i) First, the partial mean is computed

1
t

t
j=1

yj = m0 + m1
1
t

t
j=1

j +
1
t

t
j=1

xj.

(ii) Second, the partial mean is subtracted from yt

yt −
1
t

t
j=1

yj = m1t + xt − m1
1
t

t
j=1

j −
1
t

t
j=1

xj

= m1t − m1
1
t
t (t + 1)

2
+ xt −

1
t

t
j=1

xj

=
m1

2
(t − 1) + xt −

1
t

t
j=1

xj.

(iii) Third, compute

2
t

t
j=1


yj −

1
j

j
i=1

yi


=

2
t

t
j=1


m1

2
(j − 1) + xj −

1
j

j
i=1

xi



=
m1

2
(t − 1) +

2
t

t
j=1

xj −
2
t

t
j=1

1
j

j
i=1

xi.

(iv) Fourth, subtracting the quantity obtained in step (iii) from
that obtained in step (ii)

yt −
1
t

t
j=1

yj −
2
t

t
j=1


yj −

1
j

j
i=1

yi



= xt −
3
t

t
j=1

xj +
2
t

t
j=1

1
j

j
i=1

xi.
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(v) Finally,

1
n1/2+δ

n
t=1


yt −

1
t

t
j=1

yj −
2
t

t
j=1


yj −

1
j

j
i=1

yi



=
1

n1/2+δ

n
t=1


xt −

3
t

t
j=1

xj +
2
t

t
j=1

1
j

j
i=1

xi



=
1

n1/2+δ

n
t=1

xt


1 − 3

n
j=t

1
j

+ 2
n

j=t

1
j

j
i=t

1
i


.

The result follows from similar arguments as those in the proof of
Proposition 5. �
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