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Abstract
Global warming is a non-uniform process across space
and time. This opens the door to a heterogeneous rela-
tionship between CO2 and temperature that needs to be
explored going beyond the standard analysis based on
mean temperature. We revisit this topic through the lens
of a new class of factor models for high-dimensional
panel data, called quantile factor models. This technique
extracts quantile-dependent factors from the distributions
of temperature across a wide range of stable weather
stations in the northern and southern hemispheres over
1959–2018. In particular, we test whether the (detrended)
growth rate of CO2 concentrations helps to predict the
underlying factors of the different quantiles of the distri-
bution of (detrended) temperatures in the time dimension.
We document that predictive association is greater at the
lower and medium quantiles than at the upper quantiles of
temperature in all stations, and provide some conjectures
about what could be behind this non-uniformity. These
findings complement recent results in the literature docu-
menting steeper trends in lower temperature levels than in
other parts of the spatial distribution.

1 INTRODUCTION

As stressed by world leaders at the 2021 UN Climate Change Conference of the Parties (COP26),
one of the most pressing issues in the international policy agenda is the fight against the
rise of global surface temperatures. Since this phenomenon is due mainly to the increasing
concentrations of greenhouse gases in the atmosphere, a proper design of climate policy requires
a deep understanding of the relationship of global warming (GW) with carbon dioxide (CO2)
concentrations.1

From an econometrics viewpoint, several studies have used time series techniques to explore
this topic empirically (see, for example, Kaufmann et al. 2006; Stips et al. 2016; Castle and
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2 ECONOMICA

Hendry 2020; Montamat and Stock 2020; Phillips et al. 2020; Pretis 2020; Chen et al. 2022). The
standard practice is to use a time series of average global temperature across a large number of
stations to quantify the so-called equilibrium climate sensitivity (ECS), defined as the tempera-
ture response to a doubling in the CO2 concentrations, and transient climate response (TCR),
which measures the strength and speed at which climate responds to greenhouse gas forcing. The
reliability of this evidence depends on the statistical properties assumed for the time series of
interest, like the order of integration or the type of deterministic trends they present.

This standard analysis of average temperature has to be complemented by a broader one
that takes into account the well-known fact that GW is a spatially and temporally non-uniform
process (Chapman et al. 2013; Shindell, 2014; Ji et al. 2014; Previdi et al. 2021; Gadea and
Gonzalo 2023). Our contribution to this literature goes in this direction. In particular, we pro-
pose a novel econometric methodology aimed at establishing predictive association between
temperature and CO2 concentrations, allowing for heterogeneity in this relationship. It relies on
quantile factor models (QFMs) (Chen et al. 2021), whose use in this context can be motivated
as follows.

Let a panel of temperature {Xit} be available for i = 1, … ,N stations and t = 1, … ,T peri-
ods, together with time observations on CO2, denoted as {Zt}, t = 1, … ,T , which are uniform
across all stations. Different approaches are available to analyse the association between these two
variables (or stationary transformations of them). For example, researchers can adopt a condi-
tional regression approach for each individual station, 𝔼[Xit|Zt] = 𝛾0i + 𝛾1iZt, i = 1, … ,N, and
then compute the distribution of the parameter of interest 𝛾1 using station-level estimates of 𝛾̂1i.
However, when N is large and T is smaller, not only can this procedure be computationally bur-
densome, but also the individual estimates from each separate regression would lack precision. As
a result, a standard practice in this literature is to average temperatures across weather stations for
each period, and then estimate a single conditional regression of the form 𝔼[Xt|Zt] = 𝛾0 + 𝛾1Zt,
where Xt is the series of mean temperatures, and 𝛾1 is the mean of 𝛾1. Likewise, by assuming a
single common factor structure Xit = 𝜆ift + 𝜀it, an alternative procedure would be to extract the
common factor ̂ft through principal components analysis (PCA), and estimate a single condi-
tional regression of the form 𝔼[̂ft|Zt] = 𝛿0 + 𝛿1Zt. Under the standard factor model conditions
(see Bai 2003), 𝛾1 and 𝛿1 are expected to be proportional.2

However, a serious limitation of the previous approaches is that they do not allow for
the presence of heterogeneous patterns in the predictive association of CO2 with temperature.
Heterogeneity can be accounted for by adopting different quantile-estimation approaches
depending on the dimension on which one wishes to focus: either heterogeneity of tempera-
ture distribution across space (i.e. weather stations) or across time. For example, to consider
spatial heterogeneity—that is, whether CO2 has stronger effects on temperatures at certain loca-
tions (e.g. when the ECS is higher for northern latitudes than in the tropics)—one could run
OLS regressions of the unconditional quantile curves of the temperature distribution at time t
(across N stations) on Zt.3 Noticing that the unconditional temperature quantiles correspond to
different latitudes, this would be equivalent to, for example, analysing whether CO2 has a higher
ECS on northern latitudes than in the tropics, an approach that has been adopted by in the
climate literature by Leduc et al. (2016) and Miller (2023), among others. Yet a much less explored
topic in that literature is the so-called heterogeneity of the temperature distribution over time: for
example, whether CO2 affects more strongly the lowest rather than the highest temperature in a
given location, and if this effect remains uniform across all locations. This is the research question
on which we focus in this paper. To address this issue, consider the conditional quantiles
for temperature over time at each station i in the form of the quantile regression (QR)
Q
𝜏
[Xit|Zt] = 𝛽0i(𝜏) + 𝛽1i(𝜏)Zt, where 0 < 𝜏 < 1 denotes the quantile level, Q

𝜏
is the conditional

quantile, and 𝛽1i(𝜏) is the object of interest.4 One possibility is to run station-by-station QR of
the temperature distribution on CO2. However, given that N is large, this procedure is likely to
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HETEROGENEOUS PREDICTIVE ASSOCIATION 3

face the same problems as using the conditional regression approach for each individual station.
Alternatively, one could run QR for each station, and then average the estimates ̂𝛽1i(𝜏) across
units for each 𝜏. However, this would yield a doubtful statistical procedure because the average
of quantiles differs from the quantile of averages.

For this reason, our proposal relies on Chen et al. (2021), where a quantile factor structure is
assumed for panel data on temperature by weather station. Accordingly, Xit = 𝜆′i(𝜏) ft(𝜏) + uit(𝜏),
where ft(𝜏) and 𝜆i(𝜏) are r(𝜏) × 1 vectors of factors and loadings, respectively, which may differ
at each 𝜏. Once consistent estimates of the quantile-dependent objects are obtained, a natu-
ral approach is to relate the estimated common factors at each quantile ̂ft(𝜏) with Zt through
time series methods. Note that the quantile-dependent common factors in this setup are inter-
preted as aggregators for the objects of interest (temperature quantiles), in the same way as the
PCA factors are aggregators for the mean. In other words, our aim is to estimate common fac-
tors (to all stations) driving temperature at different quantiles, namely, those forces that drive
lower, medium and higher temperatures in both the Antarctic and the Sahara (irrespective of
whether the lowest temperature in the latter is much higher than the hottest temperature in the
former), to then study the predictive power of CO2 on these quantile factors. Hence, insofar
as the quantiles are computed separately for each station, we allow for some individual het-
erogeneity while keeping our main focus on heterogeneity along the temperature distribution
over time.

In line with the generalization of linear regression to QR models, QFMs can be understood as
an extension of approximate factor models (AFMs) to allow for hidden factors shifting specific
characteristics (moments or quantiles) of the distribution of temperature.5 As a simple illustration
of the advantages of QFMs over AFMs, consider the factor structure in a standard location-scale
shift model with the following data generating process (DGP): Xit = 𝛼if1t + 𝜂if2t𝜀it, with f1t ≠ f2t

(both are scalars), 𝜂i, f2t > 0 and 𝔼(𝜀it) = 0. The first factor (f1t) shifts location, whereas the
second (f2t) shifts the scale and therefore governs the volatility of shocks to Xit.6 Such
a DGP can be rewritten in QR format as Xit = 𝜆′i(𝜏) ft + uit(𝜏), with 0 < 𝜏 < 1, 𝜆i(𝜏) =
[𝛼i, 𝜂iQ𝜀

(𝜏)]′, where Q
𝜀

(𝜏) represents the quantile function of 𝜀it, ft = [f1t, f2t]′, uit(𝜏) =
𝜂if2t[𝜀it −Q

𝜀

(𝜏)], and the conditional quantile is Quit(𝜏)[𝜏|ft] = 0. It can be checked that
PCA will extract only the location-shifting factor f1t in this model; it will fail to capture
the scale-shifting factor f2t. By contrast, the estimation of a QFM by the so-called quan-
tile factor analysis (QFA) will be able to retrieve the space spanned by both factors in
this DGP.7

As explained further below, the QFA estimation procedure relies on the minimization of
the standard check function in QR (instead of the quadratic loss function used in an AFM)
to estimate jointly the common factors and their loadings at a given quantile, once the num-
ber of factors has been selected by a consistent criterion. Lastly, it is noteworthy that, given
that QFA captures all quantile-shifting factors (including those affecting the means of observed
variables), it provides a natural way to differentiate an AFM from a QFM. This is especially rel-
evant in the presence of outliers, where QFA will render valid estimation and inference, while
an AFM may not work well.8 Indeed, since outliers are present in the panel data of tempera-
ture, we will illustrate the advantages of using QFA in such a case through several Monte Carlo
simulations.

In the empirical analysis, we make use of a balanced panel of 441 station-level annual mean
temperature series over the period 1959–2018. A key requirement for extracting the QFA (and
PCA) factors is that the individual time series processes do not have stochastic or deterministic
trends. Therefore, prior to implementing the QFA, we establish the statistical properties of these
series and apply the corresponding filtering to achieve that condition. Note that the identifi-
cation of the type of process followed by the temperature series has been subject to an intense
debate in the climate econometrics literature. On the one hand, authors such as Kaufmann
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4 ECONOMICA

et al. (2006), Chang et al. (2020), Phillips et al. (2020) and Pretis (2020), among others, argue that
temperature has stochastic trends, as is also the case for CO2, and therefore defend the use of coin-
tegration methods if appropriate. On the other hand, authors such as Gao and Hawthorne (2006),
Gay-Garcia et al. (2009) and Estrada et al. (2013) claim that global temperature
follows a trend-stationary process with non-linear deterministic trends. Our findings are more
in line with the latter view: we cannot reject that the temperature series are trend-stationary,
though trends appear to be linear. For example, Figure 1 plots temperature series (without
detrending) for five randomly selected stations in our dataset, where it becomes clear
that the station with lower temperature (station 1) exhibits a clear upward trend, whereas
the others have smoother linear trends. Hence we linearly detrend Xit before QFA
is implemented.9

Once the quantile-dependent common factors have been extracted, the next step in our pro-
posed methodology is to determine the existence of predictive association between those factors
and (a convenient transformation of) CO2 concentrations. In line with most of the literature, the
statistical properties of the latter variable points to the existence of a unit root in levels, while
its first difference is trend-stationary, again with a linear upward trend as shown in Figure 2 (see
similar evidence in Bennedsen et al. 2023). Therefore we consider linearly detrended changes in
atmospheric CO2 concentrations as a predictor for the quantile-dependent common factor series
of (detrended) temperature. In this respect, it noteworthy that the Arrhenius (1896) hypothesis
stated the existence of a linear relation between the levels of temperature and the levels (or logs)
of atmospheric CO2. Yet there is strong evidence that during our sample period (1959–2018),
temperature behaves as a trend-stationary variable whereas CO2 levels are integrated of order 1
(denoted I(1)) around a quadratic trend. Hence, to run balanced regressions, one has to regress
levels of temperature on first differences of CO2 and a trend or, using the Frisch–Waugh–Lovell
Theorem, detrended series of the dependent variable on detrended changes of the regressor plus
lags. Taking this key point into consideration, the existence of predictive association is deter-
mined through an F-test for the joint significance of the coefficients associated to the lags of the
CO2 concentrations related variable in first differences.

Given the previous discussion, a brief summary of our empirical methodology follows
to facilitate its understanding. For simplicity, let us focus on a given station i and a given

F I G U R E 1 Temperature
series in selected stations.
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HETEROGENEOUS PREDICTIVE ASSOCIATION 5

quantile 𝜏 of its temperature distribution over time. Denote temperature by Xit, and changes in
CO2 concentrations by Zt. Then

Xit = px(t) + ̃Xit, (1)

̃Xit(𝜏) = 𝜆i(𝜏) ft(𝜏) + uit(𝜏), (2)

Zt = pz(t) + ̃Zt, (3)

ft(𝜏) = 𝛽𝜏 ̃Zt + et, (4)

where px(t) and pz(t) are trend polynomials (selected to be linear) in temperature and other green-
house gases (e.g. methane) different from CO2 that also exhibit trends, ̃Xit and ̃Zt are deviations
of Xit and Zt from their trends, ft(𝜏) is the factor at quantile 𝜏, and 𝜆i(𝜏) is the corresponding
loading. Equation (4) is the predictive OLS regression run separately for each 𝜏, and uit and et

are error terms. Substituting equations (3) and (4) into (2) yields

̃Xit = 𝜆i(𝜏) 𝛽𝜏 ̃Zt + (𝜆i(𝜏) et + uit(𝜏)) = 𝛾i(𝜏) ̃Zt + vit(𝜏),

which implies the conditional quantile on which QFM is based, that is, Q
𝜏
(̃Xit|̃Zt) = 𝛾i(𝜏) ̃Zt.

Two important features of our proposed methodology need to be clarified from the outset.
First, our proposed procedure is akin to a Granger causality analysis for a given information set
in a restrictive sense, namely, by assuming that CO2 concentrations (together with past temper-
atures) are the whole information set available for the econometrician. Since this is not realistic,
we claim only the existence of predictive power or predictive association. Second, the object of
interest in our analysis differs from the complementary studies relating temperature and CO2

concentrations. Here, the QFA allows us to extract the common factors that drive variations of
temperature around a linear trend in all the stations. For instance, at a low quantile of reference,
we are extracting the common factors that drive large negative fluctuations in detrended local
temperatures in all available units, to later examine if such fluctuations can be predicted by past
changes in CO2 concentrations around its trend. This is a different association indicator from the
ECS or the TCR analysed in the standard literature, which seeks to establish a causal relationship
through a more structural model.

F I G U R E 2 First differences of
atmospheric CO2 concentrations data
(GCB).

 14680335, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ecca.12491 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [25/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 ECONOMICA

In summary, starting from the well-known fact that GW is a non-uniform process (spatially
and temporarily), this paper provides a novel quantitative methodology that helps us to anal-
yse the heterogeneous predictive association between CO2 and the GW process. We find that
this association, at the temporal level station by station, is statistically significant at the lower
part of the temperature distribution and non-significant at the upper one. This feature can have
more serious consequences than an increase in the middle part of the distribution. In this sense,
our results complement the available ones in the literature on climate sensitivity (Sherwood
et al. 2020) that focus mostly on the mean temperature. They also point out that future climate
agreements should go beyond the mean temperature target and instead consider the whole
temperature distribution and a CO2 concentrations objective.

The rest of the paper is organized as follows. Section 2 defines the QFM. In Section 3, we
introduce the QFA estimator and its computational algorithm, a consistent selection criterion to
choose the number of factors at each quantile, and finally run a Monte Carlo simulation to high-
light the advantages of using QFA instead of PCA in finite samples with big outliers. Section 4
considers the empirical application about the predictive association between CO2 concentra-
tions and GW using a large panel dataset on the annual distributions of temperatures. Section 5
discusses our main findings. Finally, Section 6 concludes. An Appendix gathers supplementary
material related to further robustness results and some auxiliary procedures referred to in the
main text.

2 QUANTILE FACTOR MODEL

To motivate our empirical analysis, this section reviews the basic concepts and tools underlying
the Chen et al. (2021) QFM approach.

Let {Xit} be a panel of N observed variables (units), each with T observations. Then Xit, with
i = 1, 2, … ,N and t = 1, 2, … ,T , has the following QFM structure at some 𝜏 ∈ (0, 1):

QXit
[𝜏| ft(𝜏)] = 𝜆′i(𝜏) ft(𝜏),

where the common factors ft(𝜏) are gathered in an r(𝜏) × 1 vector of unobserved random vari-
ables, and 𝜆i(𝜏) is an r(𝜏) × 1 vector of non-random factor loadings with r(𝜏)≪ N. Note that
in the QFM defined above, the factors, loadings and number of factors are all allowed to be
quantile-dependent.

Alternatively, the above equation implies that

Xit = 𝜆′i(𝜏) ft(𝜏) + uit(𝜏), (5)

where the quantile-dependent idiosyncratic error uit(𝜏) is assumed to satisfy the quantile restric-
tion P[uit(𝜏) ≤ 0| ft(𝜏)] = 𝜏.

As mentioned in the Introduction, location-scale shift models provide nice illustrations of
potential DGPs with the above QFM representation. In particular, recall the example given
above, namely Xit = 𝛼′i f1t + (𝜂′i f2t)𝜀it, where {𝜀it} are zero-mean independent and identically dis-
tributed (i.i.d.) errors independent of {f1t} and {f2t}, with cumulative distribution function (CDF)
F
𝜀

such that the median of 𝜀it is 0, that is, Q
𝜀

(0.5) = 0, 𝛼i, f1t ∈ ℝr1 , 𝜂i, f2t ∈ ℝr2 and 𝜂

′
i f2t > 0.

Then when f1t and f2t do not share common elements, this model has a QFM representation as in
equation (5), with 𝜆i(𝜏) = [𝛼′i , 𝜂

′
i Q

𝜀

(𝜏)]′, ft(𝜏) = [ f ′1t, f
′
2t] for 𝜏 ≠ 0.5 and 𝜆i(𝜏) = 𝛼i, ft(𝜏) = f1t for

𝜏 = 0.5. Note that for this DGP, the loadings are quantile-dependent objects, while the factors
are not. An alternative example where factors do depend on quantiles is provided by a similar
DGP where now different (positive) factors affect the first three moments of the data, that is,
Xit = 𝛼if1t + f2t𝜀it + f3t𝜀

3
it, where 𝜀it follows a standard normal random variable with CDF Φ(⋅).

Then Xit has an equivalent representation in the form of equation (5), with 𝜆i(𝜏) =

 14680335, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ecca.12491 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [25/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



HETEROGENEOUS PREDICTIVE ASSOCIATION 7

[𝛼i,Φ−1(𝜏), ci Φ−1(𝜏)3]′, ft(𝜏) = [f1t, f2t, f3t]′ for 𝜏 ≠ 0.5 and 𝜆i(𝜏) = 𝛼i, ft(𝜏) = f1t for 𝜏 = 0.5.
In particular, since the mapping 𝜏 → Φ−1(𝜏)3 is strictly increasing, there exists a QFM
representation as in equation (5) with 𝜆i(𝜏) = [𝛼i,Φ−1(𝜏)]′ and ft(𝜏) = [f1t, f2t + f3t Φ−1(𝜏)2]′ for
𝜏 ≠ 0.5, so that the second factor in ft(𝜏) is quantile-dependent even for 𝜏 ≠ 0.5.

Finally, recall that applying PCA to the data in the two previous DGPs will fail to capture the
extra factors shifting quantiles, other than the means. Hence the need to use QFA to estimate all
quantile-dependent objects in the QFM.

3 QFA ESTIMATORS

To simplify the notation, we suppress hereafter the dependence of ft(𝜏), 𝜆i(𝜏), r(𝜏) and uit(𝜏) on 𝜏,
so that the QFM in equation (5) is rewritten as

Xit = 𝜆′i ft + uit, P[uit ≤ 0| ft] = 𝜏,

where 𝜆i, ft ∈ ℝr. Let { f0t} and {𝜆0i} be the true values of { ft} and {𝜆i}, respectively. A fixed
effects approach is taken by treating {𝜆0i} and { f0t} as parameters to be estimated, so that the
asymptotic analysis is conditional on { f0t}. In the first subsection, we consider the estimation of
{𝜆0i} and { f0t} while r is assumed to be known; the estimation of r at each quantile is discussed
in the second subsection.

3.1 Estimating quantile factors and loadings

It is well known in the literature on factor models that {𝜆0i} and { f0t} cannot be identified sep-
arately without imposing normalizations (see Bai and Ng 2002). Without loss of generality, the
following normalizations are imposed:

1
T

T∑

t=1

ftf ′t = 𝕀r,
1
N

N∑

i=1

𝜆i𝜆
′
i is diagonal with non-increasing diagonal elements. (6)

Let M = (N + T)r and 𝜃 = [𝜆′1, … , 𝜆

′
N , f

′
1 , … , f ′T ]

′, and let 𝜃0 = [𝜆′01, … , 𝜆

′
0N , f

′
01, … , f ′0T ]

′

denote the vector of true parameters, where the dependence of 𝜃 and 𝜃0 on M is also suppressed
to save notation. Let, ⊂ ℝr, and define

Θr =
{
𝜃 ∈ ℝM ∶ 𝜆i ∈ , ft ∈  for all i, t, and {𝜆i}, { ft} satisfy the normalizations in (6)

}
.

Further, define

𝕄NT (𝜃) =
1

NT

N∑

i=1

T∑

t=1

𝜌
𝜏
(Xit − 𝜆′i ft),

where 𝜌
𝜏
(u) = (𝜏 − 1{u ≤ 0})u is the check function. The QFA estimator of 𝜃0 is defined as

̂
𝜃 = [̂𝜆′1, … ,

̂
𝜆

′
N ,
̂f ′1 , … ,

̂f ′T ]
′ = arg min

𝜃∈Θr
𝕄NT (𝜃).

This estimator extends the PCA estimator studied by Bai and Ng (2002) and Bai (2003) in the
same way as QR is related to standard least squares regressions. However, unlike these PCA
estimators, ̂𝜃 does not yield an analytical closed form. Thus the need for the Chen et al. (2021)
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8 ECONOMICA

computational algorithm, labelled iterative quantile regression (IQR), that can effectively find the
stationary points of the object function, described in the first subsection of the Appendix.

Likewise, the asymptotic properties of the QFA estimators are not presented here, for brevity,
but can be reviewed directly in Chen et al. (2021). In any case, it should be highlighted that they
achieve asymptotic normality with the same convergence rates as PCA, and foremost that these
properties hold even when the distribution of the idiosyncratic errors has no moments.

3.2 Selecting the number of factors at quantiles

To allow for an unknown number of quantile-dependent factors, Chen et al. (2021) propose a
rank-minimization criterion to select the correct number at each 𝜏 with probability approach-
ing 1. Suppressing once again the dependence of r(𝜏) on 𝜏 to ease notation, the criterion works
as follows.

Let k be a positive integer larger than r, and let k and k be compact subsets of ℝk.
In particular, let us assume that [𝜆′0i 01×(k−r)]′ ∈ k for all i. Then let 𝜆k

i , f
k
t ∈ ℝk for all i, t,

and write 𝜃k = [𝜆k′
1 , … , 𝜆

k′
N , f

k′
1 , … , f k′

T ]
′, Λk = [𝜆k

1 , … , 𝜆

k
N]
′, Fk = [ f k

1 , … , f k
T ]
′. Consider the

normalizations for factors and loadings discussed above; define ̂Λ
k
= [̂𝜆k

1 , … ,
̂
𝜆

k
N]
′, and write

(̂Λ
k
)′ ̂Λ

k
∕N = diag(𝜎k

N,1, … , 𝜎

k
N,k).

The rank minimization criterion to estimate the number of factors r is defined as

r̂rank =
k∑

j=1

1{𝜎k
N,j > PNT},

where PNT is a sequence that goes to 0 as N,T →∞. In other words, r̂rank can be interpreted as a

rank estimator of (̂Λ
k
)′ ̂Λ

k
∕N since this average converges to a matrix with rank r, where PNT can

be viewed as a cut-off value determining that asymptotic rank. In particular, Chen et al. (2021)
find that the following choice of PNT works well in practice:

PNT = 𝜎k
N,1

(

1
L2

NT

)1∕3

.

3.3 Relative performance of PCA and QFA in a DGP with outliers

Two of the main characteristics of climate change are the existence of extreme events and the
presence of outliers. In particular, the proportion of records that can be considered as outliers in
the temperature data that we use in the empirical analysis is around 4% of the sample per year
(see Figure 3).10 Therefore this subsection studies how robust our novel proposed methodology
is to outliers.

As mentioned earlier, at 𝜏 = 0.5, QFA can be viewed as a robust QR alternative to the PCA
estimators. By the same token, the QFA estimator of the number of factors should also be more
robust to outliers and heavy tails than other popular estimators used in the AFM literature, such
as the information criteria (IC)-based method of Bai and Ng (2002) and the eigenvalue ratio (ER)
estimator proposed by Ahn and Horenstein (2013). In what follows, we confirm these two claims
by means of a few Monte Carlo simulations.
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HETEROGENEOUS PREDICTIVE ASSOCIATION 9

F I G U R E 3 Proportion
of outliers in temperature
data.

In particular, the following DGP is considered:

Xit =
3∑

j=1

𝜆jifjt + uit,

where f1t = 0.8f1,t−1 + 𝜀1t, f2t = 0.5f2,t−1 + 𝜀2t and f3t = 0.2f3,t−1 + 𝜀3t, the 𝜆ji, 𝜀jt are all
independent draws from  (0, 1), and uit ∼ i.i.d. Bit ⋅ (0, 1) + (1 − Bit) ⋅ Cauchy(0, 1), where
Bit are i.i.d. Bernoulli random variables with mean 0.98, and Cauchy(0, 1) is the standard Cauchy
distribution. Thus approximately 2% of the idiosyncratic errors are generated as outliers.

We consider four estimators of the number of factors r: two estimators based on the principal
components PCp1 and information criteria ICp1 classes of Bai and Ng (2002), the ER estimator
of Ahn and Horenstein (2013), and the above-mentioned Chen et al. (2021) rank-minimization
estimator with PNT chosen as in the previous subsection. We set k = 8 for all four estimators, and
consider N,T ∈ {50,100, 200,500}.

Table 1 reports the following fractions for each estimator having run 1000 replications:

[proportion of r̂ < 3, proportion of r̂ = 3, proportion of r̂ > 3].

It becomes evident that PCp1 and ICp1 almost always overestimate the number of factors, while
the ER estimator tends to underestimate them, though to a lesser extent than PCp1 and ICp1

overestimate them. By contrast, the rank-minimization estimator selects more accurately the right
number of factors.

Next, to compare the PCA and QFA estimators of the common factors in the previous DGP,
let us assume that r = 3 is known. We first find the PCA estimator (denoted ̂FPCA), and then
obtain the QFA estimator at 𝜏 = 0.5 (denoted ̂F0.5

QFA) using the IQR algorithm. Next, each of

the true factors is regressed on ̂FPCA and ̂F0.5
QFA separately, and their average (adjusted) R2 values

from 1000 replications are reported in Table 2 as an indicator of how well the space of the true
factors is spanned by the estimated factors. As can be inspected, the PCA estimators are not very
successful in capturing the true common factors, while the QFA estimators approximate them
very satisfactorily, even when N,T are not too large. Thus this simulation exercise provides strong
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HETEROGENEOUS PREDICTIVE ASSOCIATION 11

T A B L E 2 AFM with Outliers in the Idiosyncratic Errors: Estimation of the Factors

Regress F on ̂FPCA Regress F on ̂F0.5
QFA

N T f1 f2 f3 f1 f2 f3

50 50 0.939 0.810 0.686 0.987 0.975 0.968

50 100 0.931 0.718 0.578 0.987 0.975 0.968

50 200 0.890 0.589 0.412 0.987 0.975 0.968

50 500 0.807 0.405 0.252 0.988 0.975 0.968

100 50 0.928 0.738 0.595 0.993 0.986 0.984

100 100 0.921 0.630 0.441 0.994 0.988 0.984

100 200 0.857 0.479 0.285 0.994 0.988 0.985

100 500 0.713 0.294 0.138 0.994 0.988 0.984

200 50 0.890 0.657 0.513 0.997 0.994 0.992

200 100 0.858 0.514 0.333 0.997 0.994 0.993

200 200 0.779 0.358 0.178 0.997 0.994 0.992

200 500 0.530 0.131 0.051 0.997 0.994 0.992

500 50 0.819 0.501 0.371 0.998 0.997 0.996

500 100 0.725 0.327 0.196 0.999 0.998 0.997

500 200 0.546 0.165 0.062 0.999 0.998 0.997

500 500 0.273 0.036 0.018 0.999 0.998 0.997

Notes: The DGP considered in this table is as for Table 1. For each estimation method, we report the average R2 in the regression of
(each of) the true factors on the estimated factors by PCA and QFA (assuming the number of factors to be known).

evidence in favour of using QFA instead of PCA in those cases where the idiosyncratic error terms
in AFM exhibit heavy tails and outliers.

4 CLIMATE CHANGE AND CO2 CONCENTRATIONS

4.1 Data description

For the empirical analysis, we use data from the Climatic Research Unit (CRU) at the Univer-
sity of East Anglia. In principle, the CRU provides monthly and annual data of land and sea
temperatures in the northern and southern hemispheres from 1850 to the present, collected at
different stations around the globe. However, a limitation of this dataset is that the number of
stations fluctuates each year, and its geographic distribution of stations is far from being homo-
geneous. In effect, a higher concentration of stations is reported for the USA, southern Canada,
Europe and Japan, while lesser coverage is reported in South America, Africa and Antarctica.
Thus to guarantee some stability in the distribution of temperatures, we restrict the sample to
1959–2018 when data for those stations are available each year. Applying this procedure, we con-
struct a balanced panel of local mean annual temperatures for 441 stations (N) observed over
60 periods (T).

Data on CO2 are obtained from the Global Carbon Budget (GCB) series.11 The specific
information on atmospheric CO2 concentrations that we use is drawn from Dlugokencky and
Tans (2020) for the period 1959–2018, and measured in gigatons of carbon (GtC) per year. The
same series has been used recently by Bennedsen et al. (2023) in the estimation of a multivariate
dynamic model involving the main variables included in the GCB; Figure 4 displays this series,
whereas its corresponding first differences were plotted in Figure 2 in the Introduction. For the
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12 ECONOMICA

F I G U R E 4 Atmospheric CO2

concentrations (GCB).

early period 1959–80, estimations are based on Mauna Loa and South Pole stations as observed
by the CO2 programme at Scripps Institution of Oceanography; from 1980 onwards, they cor-
respond to global averages estimated from multiple stations run by the National Oceanic and
Atmospheric Administration (NOAA) and Earth System Research Laboratory (ESRL).

In addition, our choice of sample period is also determined by the characteristics of the data
on CO2. In fact, before 1958, CO2 concentrations were inferred from ice drilling, and it is only
from 1959 that they started to be measured with instruments. As Pretis and Hendry (2013) dis-
cuss, pooling over different measurement regimes hinders the statistical analysis of the series and,
in particular, the identification of the order of integration. Hence these arguments also support
restricting attention to the above-mentioned sample period. Other papers analysing the rela-
tionship between temperature and CO2 over the same time window include Pretis (2020) and
Bennedsen et al. (2022).

4.2 Testing for trends in temperature data

Gadea and Gonzalo (2020) provide a methodology to test for the existence of trends in the uncon-
ditional distributional characteristics (moments, quantiles, etc.) of global temperatures. Treating
temperatures as a functional stochastic process, their distributional characteristics can be thought
of as time series objects to which one could apply standard testing procedures. For example, the
proposed robust linear trend test is based in the statistical significance of the 𝛽 coefficient in the
following least squares regression:

Ct = 𝛼 + 𝛽t + vt, t = 1, … ,T , (7)

where Ct denotes a particular distributional characteristic of interest (e.g. a given quantile). The
asymptotic properties of the OLS estimator in equation (7) depend on the summability order of
the unknown trend component, k ≥ 0, defined as follows. Let Ct = h(t) + vt, where vt is an I(0)
process, and h(t) is the unknown trend polynomial process of order k with coefficients 𝛽k. Then
its summability order becomes

ST =
1

T1+k

T∑

t=1

h(t).
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HETEROGENEOUS PREDICTIVE ASSOCIATION 13

The OLS estimated coefficient in (7) becomes

̂
𝛽 =

∑
t Ct − T t C
∑

t2 − T t
2
,

where

∑
tCt = T2+k 1

T

∑
(

t
T

Ct

Tk

)

and
∑

t2 = T3 1
T

∑( t
T

)2
,

so that T3∕2(̂𝛽 − Tk−1
𝛽k) = Op(1), implying consistency if k = 0, 1. In such cases, it can be verified

that t
𝛽=0 → N(0, 1), so that the linear test based on equation (7) can detect any type of trend

even if it is non-linear. Notice that we have assumed vt to be I(0), but nothing changes when
it is a priori unknown whether vt is I(0) or I(1). In effect, Perron and Yabu (2009) propose an
estimation procedure based on feasible quasi-generalized least squares for this agnostic case, and
show that the limiting distribution of a similar t-statistic for 𝛽 = 0 remains N(0, 1), the intuition
being that the divergence rate of a deterministic trend is faster than that of a stochastic trend. In
any case, our temperature data—either by stations or by characteristics—do not contain a unit
root, as discussed in the second subsection of the Appendix.

The test is implemented as a preliminary inspection of the statistical properties of tempera-
tures in our dataset. Using their cross-sectional distribution, a set of representative distributional
characteristics (mean, standard deviation, quantiles, etc.) are estimated for the sample period
1959–2018. Figure 5 presents plots of the mean and quantiles q10, q25, q50, q75 and q90. Accord-
ing to the evidence shown in Table 3, a linear trend component is detected in most of these
characteristics (except in the interquantile range, iqr). Moreover, the GW phenomenon is clearly
heterogeneous along the temperature distribution since the slope of the trend coefficients in the
lower quantiles is steeper than those in the mean, median and upper quantiles. Interestingly, these
results are qualitatively similar to those reported by Gadea and Gonzalo (2020) using a different
dataset over the longer period 1880–2015.

F I G U R E 5 Estimated
distributional characteristics.
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14 ECONOMICA

T A B L E 3 Gadea–Gonzalo Trend Test (1959–2018)

Characteristic Test statistic p-value

Mean 0.0264 0.0000

S.D. −0.0050 0.0000

Min 0.0605 0.0000

Max 0.0407 0.0000

iqr −0.0013 0.2461

kur −0.0018 0.0054

skw 0.0007 0.0114

q01 0.0468 0.0000

q05 0.0385 0.0000

q10 0.0302 0.0000

q25 0.0240 0.0000

q50 0.0301 0.0000

q75 0.0227 0.0000

q90 0.0181 0.0000

q95 0.0161 0.0000

q99 0.0215 0.0000

Notes: Here, ‘kur’ refers to kurtosis, and ‘skw’ to skewness. Annual distributional characteristics are estimated using the cross-sectional
distribution at each year (1959–2018). OLS estimates and heteroscedasticity- and autocorrelation-consistent t

𝛽=0 p-values from
regression (7) are reported.

4.3 Quantile factor analysis

The previous evidence opens the door to analyse heterogeneous association patterns between
local (station-level) temperatures and atmospheric CO2 concentrations using our proposed QFA
procedure. To do so, we first estimate the quantile-dependent common factors of the temperature
panel, and then use them as dependent variables in predictive association regressions with CO2

concentrations.
A key requirement for extracting the QFA (and the PCA) factors is the absence of stochas-

tic and deterministic trends in the individual temperature processes. The second subsection
of the Appendix reports the results of applying standard augmented Dickey–Fuller (ADF)
tests in regressions with a linear trend component. As was mentioned before, the null of unit
root is rejected in almost all the stations (except in five cases), as well as in the distributional
characteristics of interest. Based on this evidence, we conclude that the individual tempera-
ture series are trend-stationary. Thus linear detrending is implemented to achieve the above
requirements.12

Accordingly, QFA is applied on the linearly detrended panel of station-level temperatures
in its standardized format, so that the lower (higher) quantiles capture large negative (positive)
variations of temperature around a linear trend. The number of factors are selected according to
the rank-minimization criterion discussed in the second subsection of Section 2 for a fine grid of
quantile levels 𝜏, ranging from 0.01 to 0.99. As pointed out before, the number of factors varies
across quantiles, declining as we move away from the median. In particular, these numbers are:
1 (at 𝜏 = 0.01, 0.05, 0.10, 0.95, 0.90, 0.99), 3 (at 𝜏 = 0.25, 0.75) and 4 (at 𝜏 = 0.5). For illustrative
purposes, Figure 6 shows that the estimated factors for the quantiles 0.01, 0.50 and 0.99 are
fairly different. In addition, PCA is used to estimate the factors at the mean, where the num-
ber of factors is chosen according to the PCp1 criterion of Bai and Ng (2002), which selects 8.
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HETEROGENEOUS PREDICTIVE ASSOCIATION 15

F I G U R E 6 Estimated
QFA factors.

T A B L E 4 Comparison of ̂FQFA and ̂FPCA

Elements of ̂F 𝜏

QFA

𝜏 (1) (2) (3) (4)

0.01 0.6846

0.05 0.7179

0.10 0.7852

0.25 0.9560 0.9624 0.9571

0.50 0.9967 0.9968 0.9839 0.9806

0.75 0.9368 0.9481 0.9372

0.90 0.7290

0.95 0.6624

0.99 0.6043

Notes: This table reports the R2 of regressing each element of ̂FQFA on ̂FPCA. For ̂FQFA, the number of estimated factors is obtained using

the rank-minimization criterion, while for ̂FPCA, the number of estimated factors is equal to 8 in all datasets.

This is the maximum number imposed in the IQR computational algorithm described in the
first subsection of the Appendix.

To compare the QFA factors (denoted as ̂F𝜏

QFA) with the PCA factors (denoted as ̂FPCA), we

regress each element of ̂F𝜏

QFA on the eight ̂FPCA, and compute their corresponding R2 as a mea-

sure of correlation.13 The results are shown in Table 4. It becomes clear that, for the quantiles
at the centre of the distribution (𝜏 = 0.25, 0.5, 0.75), the estimated factors are highly correlated
with the PCA factors, with all the R2 values exceeding 0.90, especially in the case of the fac-
tors for the median (above 0.98). By contrast, the QFA factors at the upper and lower quantiles
(e.g. 𝜏 = 0.01, 0.05, 0.95, 0.99) exhibit much lower correlations with the PCA factors, with R2 val-
ues fluctuating between 0.6 and 0.7. Thus there seems to be room for using QFA in this application
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16 ECONOMICA

since the factors at the extreme quantiles help to identify different features of the temperature
distribution that the factors at the medium quantiles are unable to capture.

4.4 Temperature factors and CO2 concentrations

Bivariate tests characterizing the predictive association between the estimated QFA temperature
factors and a suitable transformation of the atmospheric CO2 concentrations are implemented
next. The statistical properties of the latter determine how it should be transformed. The plot
in Figure 4 makes it clear that the CO2 concentrations series from the GCB is upward trend-
ing and exhibits the typical dynamics of a unit root process. Moreover, the first-differenced
series presented in Figure 2 points to an acceleration over the sample period following a linear
trend. These features are confirmed by an ADF test reported in the second subsection of the
Appendix, which suggest that the level of CO2 concentrations has a unit root, while the growth
rate is trend-stationary. As discussed in Bennedsen et al. (2023), these properties are consistent
with a dynamic statistical model relating CO2 concentrations, anthropogenic CO2 emissions, and
absorption of CO2 by the terrestrial, ocean and marine biospheres. The same statistical proper-
ties hold for the (logged) CO2 concentrations from Mauna Loa and the CO2 radiative forcing,
series that we use in the robustness exercises undertaken in the third subsection of the Appendix.

Building on the previous observations, the tests to be implemented rely on separate OLS
regressions of the estimated QFA factors at each relevant quantile (̂F𝜏

QFA,t) on p own lags and q lags

of the linearly detrended changes in atmospheric CO2 concentrations (̂ΔCO2). In other words,
this approach sheds light on whether past fluctuations in CO2 concentration changes around a lin-
ear trend have a predictive power on the common quantile-dependent factors of the station-level
temperature fluctuations, again around a linear trend. The specific regressions are given by

̂F𝜏

QFA,t = 𝛼 +
p∑

i=1

𝛽i × ̂F𝜏

QFA,t−i +
q∑

j=1

𝛾j × ̂ΔCO2,t−j + ut, (8)

where the lag lengths p and q are selected through a general-to-specific approach.
Given that QFA and PCA estimated factors share the same rates of convergence, a condition

similar to that used in Bai and Ng (2006) is required to replace the true quantile factors by the
QFA estimated ones in equation (8), namely,

√
T∕N → 0. This condition is easily verified in our

finite sample since
√

60∕441 = 0.017. Thus the proposed test looks at the joint significance of
the 𝛾j coefficients, j = 1, … , q, by means of an F-statistic, and can be interpreted as a predictive
association test.14

Table 5 reports the p-values of the proposed tests. At a 10% significance level, we find that
past values of the linearly detrended changes in atmospheric CO2 concentrations have a pre-
dictive power on the current values of QFA factors of the temperature at the lower and middle
quantiles (𝜏 from 0.01 to 0.75). Yet this is not the case for the QFA factors at the extreme upper
quantiles (𝜏 = 0.90, 0.95, 0.99), where the null hypothesis of the test is not rejected. The detected
heterogeneous predictive association pattern is the main finding of our paper, which—as the
third subsection of the Appendix shows—happens to be robust to alternative sources, units of
measurement, and transformations of the CO2 concentrations series.

As a complementary exercise, we study the predictive association between the eight PCA
mean factors selected with the PCp1 criterion, and the suitable transformation of the CO2 con-
centrations. Notice that under the standard factor model conditions, the average temperature
across stations is equivalent to a linear combination of these eight PCA factors. Table 6 shows the
p-values for the proposed tests. In agreement with the results for the median factors, a significant
predictive association is detected for some of the PCA factors.
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HETEROGENEOUS PREDICTIVE ASSOCIATION 17

T A B L E 5 p-values of the Predictive Association Tests for the QFA Factors and transformed CO2

Elements of ̂F 𝜏

QFA

Regressor 𝜏 (1) (2) (3) (4)

̂ΔCO2 0.01 0.0713

0.05 0.0317

0.10 0.0546

0.25 0.0140 0.5626 0.7714

0.50 0.0057 0.2568 0.1899 0.0835

0.75 0.9149 0.0878 0.2499

0.90 0.2747

0.95 0.6395

0.99 0.8308

Notes: This table reports the p-values of the proposed F-test for the joint significance of the coefficients 𝛾j , j = 1, … , q, in
equation (8). Lag lengths are chosen following a general-to-specific approach. p-values smaller than 0.1 are in bold.

T A B L E 6 p-values of the Predictive Association Tests for the PCA Factors

Elements of ̂FPCA

Regressor (1) (2) (3) (4) (5) (6) (7) (8)

̂ΔCO2 0.0138 0.3556 0.2285 0.2202 0.0046 0.6469 0.4759 0.0135

Notes: See Table 5.

5 DISCUSSION

The physical link between temperature and CO2 concentrations dates back from the late
1800s (see Arrhenius 1896) in the climate science literature. Our analysis of climate sensitiv-
ity departs from the standard approach that is typically quantified as warming per doubling
of CO2 (see Sherwood et al. (2020) for a recent overview of this line of research). In partic-
ular, we use a different metric, namely, one that focuses on the predicting power of CO2 on
temperature, where the former is measured in (detrended) levels, and the latter as (detrended)
changes in global concentrations. In this fashion, our approach complements other research
on heterogeneous climate sensitivity, such as Shindell and Faluvegi (2009), where the sensitivity
of regional climate to changes in CO2 (spatial heterogeneity) is investigated. Moreover, this
non-uniformity seems to be a finding associated with only CO2. In effect, when we consider
the radiative forcing of other greenhouse gases (see the final subsection of the Appendix),
such as methane, ozone and nitrous oxide, as well as natural forcings, such as solar irradiance
and volcanic activity, we find predictive association for all quantile factors rather than for
specific ones associated with the lower and central parts of the temperature distribution, as
with CO2.

Admittedly, we still do not have a clear physical reason explaining our findings. Yet a possible
conjecture would go in parallel with the causes that explain the well-known diurnal asymmetry:
the night-time temperatures have increased more rapidly than day-time temperatures (see Davy
et al. 2017). The proposed factors behind this asymmetry could rely on changes in cloud covering,
precipitation, soil moisture, the planetary boundary layer, etc.

Finally, in spite of addressing a different research question related to GW, our results seem to
be in line with the evidence reported in Gadea and Gonzalo (2020, 2023), where GW is also found
to be non-uniform: lower temperatures increase much more than the medium and higher ones.
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18 ECONOMICA

The lower unconditional quantiles in their study correspond to the Arctic region. However, an
increase of CO2 concentrations will have unforeseen consequences (i.e. whatever happens at the
poles does not remain there): ice melting, sea-level increases, floods, migrations, extreme events,
etc. All these events are further aggravated by their own feedback effects due to the reduction in
the surface albedo (less solar energy is reflected out to space) and by the release of more green-
house gasses (CO2 and methane) from the permafrost melting. In this respect, we highlight that
non-uniform climate sensitivity is not concentrated regionally but rather affects all the regions
around the globe. In particular, the growth rate of CO2 emissions predicts (positively) the periods
where the temperature decreases or does not increase much.

In view of this evidence, further research should aim at analysing jointly the heterogeneous
predictive power of CO2 for GW at both the spatial (across stations) and temporal dimen-
sions. Preliminary results in a ongoing project on this issue point in the same direction as those
reported in this paper. Hopefully, this quantitative analysis will help in the design of more efficient
mitigation climate policies.

6 CONCLUSIONS

In this paper we test for predictive association between (detrended) CO2 concentration changes
and temperatures from 441 weather stations in the northern and southern hemispheres over the
period 1959–2018. Using the QFA methodology proposed by Chen et al. (2021), we retrieve
the quantile-dependent common factors and their number at different quantiles. We apply
predictive association tests of different CO2 concentration measures on those factors. The spec-
ification of the corresponding dynamic predictive equations is helped by the methodology
proposed by Gadea and Gonzalo (2020) to detect deterministic and stochastic trends in differ-
ent moments/quantiles of the distribution of temperature, and by ADF tests for unit roots. As a
by-product of the analysis, it is shown that QFA is a much more robust estimation method that
standard PCA in the presence of outliers, as is the case in climate data.

Our main finding is that CO2 concentration changes have stronger predictive power for factors
at the lower quantiles of the temperature fluctuations around a linear trend than at the middle
and upper quantiles. We stress once again that this result is not picked up by the use of PCA mean
factors, since they capture common features of all temperatures, whereas QFA factors capture
common features at each quantile. Thus, as discussed earlier, we interpret our results as being
complementary to those available on climate sensitivity, as, for example, in Sherwood et al. (2020).
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NOTES
1 When sunlight reaches the Earth, its surface absorbs some of the light’s energy and re-radiates it as infrared waves.

These waves travel up into the atmosphere and will escape back into space if unimpeded. For example, while oxygen
and nitrogen do not interfere with infrared waves in the atmosphere because molecules are picky about the range
of wavelengths with which they interact, CO2 and other greenhouse gases absorb energy at a variety of wavelengths
whose ranges do overlap that of infrared energy. As CO2 soaks up this infrared energy, it vibrates and re-emits the
infrared energy back in all directions. About half of that energy goes out into space, while the other half returns to
the Earth as heat, contributing to GW through the so-called ‘greenhouse effect’, first discovered by Fourier (1824),
verified experimentally by Foote (1856) and Tyndall (1863), and quantified by Arrhenius (1896).
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HETEROGENEOUS PREDICTIVE ASSOCIATION 19

2 It is possible to show that under certain assumptions on the individual loadings and the idiosyncratic error in the
single common factor structure, the aggregated common factor over the cross-sectional dimension is proportional to
the mean. Therefore PCA common factors are useful aggregators for the mean.

3 Note that a simple approach in that direction consisting of the estimation of a standard quantile regression for the
mean temperature in each period, Q

𝜏
[Xt|Zt] = 𝛽0(𝜏) + 𝛽1(𝜏)Zt, 0 < 𝜏 < 1, would still disregard all the information on

the distribution of temperature across different stations.
4 Similarly, we also use the alternative notation QX [𝜏|Z] to denote the conditional quantile of X given Z.
5 Ando and Bai (2020) use a similar setup with an unobservable factor structure that is also allowed to be

quantile-dependent; yet their assumptions are more restrictive since all the moments of the idiosyncratic errors are
required to exist.

6 Note that the simplifying assumption of a known number of factors in this specific example is relaxed later.
7 Note that since f1t can be estimated consistently by PCA in this specific DGP, it is also feasible to estimate f2t by

applying PCA to the squared residuals obtained from subtracting the factor structure at the mean from the original
variables. However, in practice, the DGP is unknown and therefore QFA is needed.

8 The insight for this relative performance is similar to the one underlying the use of robust least median regression
when outliers abound, as in Huber (1981).

9 A complete theoretical as well as empirical trend analysis can be found in Gadea and Gonzalo (2020).
10 The proportion of outliers in a given year is determined by the number of stations whose temperature record is above

two standard deviations around the mean global temperature in that year.
11 The GCB series is compiled by Friedlingstein et al. (2022) and available at https://www.icos-cp.eu/science-and-impact/

global-carbon-budget/2021 (accessed 2 July 2023).
12 Note that these properties of the dependent variables preclude the use of cointegration in a bivariate setup.
13 Recall that PCp1 is chosen to select the number of PCA factors estimated in these regressions to play conservative.
14 The specification in first differences of (logged) CO2 is further corroborated when run predictive regressions using

q + 1 lags of that variable in levels, since the sum of their estimated coefficients is not significantly different from zero,
pointing to the use of q lags of the first-differenced series as the correct choice .

15 By definition, ERFCO2
t = 5.35 × ln(CO2t∕CO2base), where CO2t are the CO2 concentrations at a given year t, and

CO2base are the CO2 concentrations at a given base year.
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APPENDIX

IQR algorithm
Using the notation in the first subsection of Section 2, let Λ = [𝜆1, … , 𝜆N]′, F = [f1, … , fT ]′,
and define the averages

𝕄i,T (𝜆,F) =
1
T

T∑

t=1

𝜌
𝜏
(Xit − 𝜆′ft) and 𝕄t,N(Λ, f ) =

1
N

N∑

i=1

𝜌
𝜏
(Xit − 𝜆′i f ).

Note that we have

𝕄NT (𝜃) = N−1
N∑

i=1

𝕄i,T (𝜆i,F) = T−1
T∑

t=1

𝕄t,N(Λ, ft).

The main difficulty in finding the global minimum of 𝕄NT is that this object function
is not convex in 𝜃. However, for given F , 𝕄i,T (𝜆,F) happens to be convex in 𝜆 for
each i, and likewise, for given Λ, 𝕄t,N(Λ, f ) is also convex in f for each t. Thus both
optimization problems can be solved efficiently by various linear programming methods
(see Koenker 2005, ch. 6). Based on this observation, the following iterative procedure is
proposed.

Iterative quantile regression (IQR)

1. Choose random starting parameters F (0).
2. Given F (l−1), solve 𝜆(l−1)

i = arg min
𝜆
𝕄i,T (𝜆,F (l−1)) for i = 1, … ,N. Given Λ(l−1), solve f (l)t =

arg minf 𝕄t,N(Λ(l−1)
, f ) for t = 1, … ,T .

3. For l = 1, … ,L, iterate step 2 until 𝕄NT (𝜃(L)) is close to 𝕄NT (𝜃(L−1)), where 𝜃

(l) =
(vech(Λ(l))′, vech(F (l))′)′.

4. Normalize Λ(L) and F (L) so that they satisfy the normalizations in (6).

In the general case where r ≥ 1, if we replace the check function in the IQR algorithm
by the least squares loss function and normalize F (l−1)

,Λ(l−1) to satisfy (6) at step 2,
then IQR is equivalent to the method of orthogonal iterations proposed by Golub and
Van Loan (2013) to compute the eigenvectors associated with the r largest eigenvalues
of XX ′.

Unit root tests
Augmented Dickey–Fuller (ADF) tests for unit roots are implemented to guide the choice
of the suitable transformations of the data coherent with the methodological devices at
hand. For the case of the temperature series, individual unit root tests are implemented
on the full set of stations. Additionally, such tests are implemented on the distributional
characteristics of interest (moments, quantiles, etc.) estimated using the cross-sectional dis-
tribution of temperatures. In the test specification, we include intercept and a linear trend.
As reported in Table A1, the null hypothesis of unit root is rejected in 98.66% of the sta-
tions; it is not rejected in only 5 stations out of 441. In a similar direction, the ADF test
suggests no unit roots on the different distributional characteristics. This piece of evidence
suggests that temperature series do not contain unit roots, but rather follow trend-stationary
processes.
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22 ECONOMICA

T A B L E A1 ADF Unit Root Tests for the Temperature Related Series

ADF test by stations

Percentage of rejections 98.66%

Number of non-rejections 5

ADF test by characteristics

Characteristic Test statistic p-value

Mean −5.6261 0.0001

S.D. −6.5609 0.0000

Min −6.2759 0.0000

Max −8.1441 0.0000

iqr −6.1115 0.0000

kur −6.5601 0.0000

skw −7.6596 0.0000

q01 −8.7850 0.0000

q05 −8.0555 0.0000

q10 −5.0763 0.0006

q25 −5.4339 0.0002

q50 −6.1891 0.0000

q75 −6.7940 0.0000

q90 −6.3746 0.0000

q95 −6.6529 0.0000

q99 −6.2450 0.0000

Notes: Here, ‘kur’ refers to kurtosis, and ‘skw’ to skewness. Annual distributional characteristics estimated using the cross-sectional
distribution at each year (1959–2018). Significance level 5% is considered in the individual tests. ADF test equations include intercept
and trend. Lag selection conducted using the structural Bayesian information criterion.

T A B L E A2 ADF Unit Root Tests CO2 and ERF Related Variables

Level series First differences

Variable Constant Constant and trend Constant Constant and trend

CO2,GCB 7.7983 −0.4758 −0.4491 −6.9110
log(CO2,MLO) 4.3538 −1.3849 −1.3903 −6.4887
ERFCO2 6.4539 −0.9759 −4.5028 −7.0202
ERFnonCO2 −4.3825 −5.7877 −7.6238 −7.5589
ERFTot −1.372 −5.8092 −7.6105 −7.5558

Notes: This table reports the test statistic of the ADF test on the corresponding variable when the test includes only a constant or a
constant and an intercept. Lags are selected using the Bayesian information criterion. The values in bold indicate that the null of the test
is rejected.

In Table A2, the p-values of the ADF test implemented on the series of CO2 and effective
radiative forcing (ERF) are reported. The three series related to CO2 (CO2,GCB, log(CO2,MLO)
and ERFCO2 ) contain a unit root in their levels, while the first differences are trend-stationary.
Regarding the ERF series, the test results indicates that the non-CO2 ERF is stationary in its
levels, while the total ERF is I(1). The unit root analysis for this set of series is consistent with
Pretis (2020) and Bennedsen et al. (2022).
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HETEROGENEOUS PREDICTIVE ASSOCIATION 23

Robustness
The main finding of the paper is the heterogeneous predictive association between a suitable
transformation of the atmospheric CO2 concentrations series from the GCB and the QFA factors
of the linearly detrended panel of local temperatures. To investigate the robustness of our findings
to the data source, units of measurement and transformation, the analysis is repeated using two
additional series of atmospheric CO2 concentrations as regressors. The first series is the mean
annual CO2 concentrations series measured in parts per million by volume as obtained from
direct measurements at Mauna Loa (CO2,MLO) and available at https://gml.noaa.gov/ccgg/trends/
data.html (accessed 2 July 2023). The second series corresponds to the ERF from the ERFCO2

t
series,15 measured in watts per square metre (W m−2) and obtained from Hansen et al. (2011)
(available at http://www.columbia.edu/~mhs119/Forcings, accessed 2 July 2023). From Figures
A1 and A2, it is clear that the dynamics of both series are similar to the dynamics of the CO2

concentrations from the GCB.
Provided that the series in Figures A1(b) and A2(b) are trend-stationary according to

the ADF tests for unit roots described in the previous subsection, in equation (8) we con-
sider as regressors the linearly detrended growth rate of CO2 concentrations from Mauna Loa
(̂Δ log(CO2,MLO)) and the linearly detrended first differences of the ERF from CO2 (̂ΔERFCO2

t ).
Results reported in Table A3 indicate that the main finding of the paper holds for the two addi-
tional series. In both cases, we reject the null of the implemented test for QFA factors at lower and

(a) (b)

F I G U R E A1 Atmospheric CO2 concentrations (Mauna Loa).

(a) (b)

F I G U R E A2 Effective radiative forcing from CO2.
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24 ECONOMICA

T A B L E A3 p-values of the Predictive Association Tests for the QFA Factors and Transformed CO2 (Robustness)

Elements of ̂F 𝜏

QFA

Regressor 𝜏 (1) (2) (3) (4)

̂Δ log(CO2,MLO) 0.01 0.0754
0.05 0.1959
0.10 0.0143
0.25 0.0533 0.0131 0.3997
0.50 0.0057 0.0154 0.5053 0.0583
0.75 0.0357 0.1356 0.6663
0.90 0.2092
0.95 0.2763
0.99 0.2076

̂ΔERFCO2
t 0.01 0.0088

0.05 0.0970
0.10 0.0187
0.25 0.0259 0.0041 0.3057
0.50 0.0236 0.0002 0.1732 0.0706
0.75 0.0365 0.0582 0.4800
0.90 0.1213
0.95 0.1027
0.99 0.3969

Notes: This table reports the p-values of the proposed F-test for the joint significance of the coefficients 𝛾j , j = 1, … , q, in the

corresponding version of equation (8) for ̂Δ log(CO2,MLO) and ̂ΔERFCO2
t . Lag lengths are chosen following a general-to-specific

approach. p-values smaller than 0.1 are in bold.

(a) (b)

F I G U R E A3 Effective radiative forcing from all sources.

middle quantiles (𝜏 from 0.01 to 0.75), while the null of the test is not rejected at upper quantiles
(𝜏 = 0.90, 0.95, 0.99).

Other warming sources
Even though the interest of the paper is on the bivariate association between CO2 and station-level
temperatures, in this subsection we briefly examine the association with other greenhouse gases
such as methane, ozone and nitrous oxide, as well as natural forcings such as solar irradiance
and volcanic activity such as the Fuego (Guatemala), El Chinchón (Mexico) and Pinataubo
(Philipinnes) eruptions that explain the big dips. In Figure A3, we present the total ERF (ERFTot)
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T A B L E A4 p-values of the Predictive Association Tests for the QFA Factors and Other Warming Sources

Elements of ̂F 𝜏

QFA

Regressor 𝜏 (1) (2) (3) (4)

ΔERFTot 0.01 0.0000

0.05 0.0592

0.10 0.0077

0.25 0.0001 0.6193 0.0000

0.50 0.0008 0.3757 0.0057 0.0782

0.75 0.0014 0.7196 0.0007

0.90 0.0065

0.95 0.0040

0.99 0.0434

ERFnonCO2 0.01 0.0572

0.05 0.0554

0.10 0.0180

0.25 0.0001 0.5056 0.0000

0.50 0.0012 0.5520 0.6629 0.1269

0.75 0.0155 0.8938 0.0011

0.90 0.0070

0.95 0.0147

0.99 0.0055

Notes: This table reports the p-values of the proposed F-test for the joint significance of the coefficients 𝛾j , j = 1, … , q, in the
corresponding version of equation (8) for ΔERFTot and ERFnonCO2 . Lag lengths are chosen following a general-to-specific approach.
p-values smaller than 0.1 are in bold.

and the ERF from sources other than CO2 (ERFnonCO2 ) as taken from Hansen et al. (2011). The
ADF tests for unit root described in the second subsection of this Appendix indicate that ERFTot

is I(1) and ERFnonCO2 is I(0).
The predictive association analysis is conducted considering as regressors the first differences

of ERFTot (ΔERFTot) or the levels of ERFnonCO2 . As observed in Table A4, when including other
sources of warming (natural or anthropogenic) different from CO2, a more homogeneous pattern
of predictive association is obtained. In fact, when considering ERFnonCO2 , it seems that the pre-
dictive association is stronger for the QFA factors of the medium and upper quantiles. A deeper
examination of the patterns of association between local temperatures and different warming is
beyond the scope of this study but constitutes an interesting avenue for future research.
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