CHAPTER 5: OPTIMIZATION

1. Unconstrained Optimization

All throughout this section, D denotes an **open subset** of \mathbb{R}^n .

1.1. First order necessary condition.

Proposition 1.1. Let $f: D \to \mathbb{R}$ be differentiable. If $p \in D$ is a local maximum or a local minimum of f on D, then

$$\nabla f(p) = 0$$

Proof Fix i = 1..., n and consider the curve

$$g(t) = f(p + te_i)$$

where $\{e_1 \dots, e_n\}$ is the canonical basis of \mathbb{R}^n . Note that g is a 1-variable differentiable function that attains a local maximum at $t_0 = 0$. Hence,

$$g'(0) = 0$$

But,

$$g'(0) = \left. \frac{d}{dt} \right|_{t=0} f(p+te_i) = \lim_{x \to 0} \frac{f(p+te_i - f(p))}{t} = \frac{\partial f}{\partial x_i}(p)$$

Definition 1.2. Let $f: D \to \mathbb{R}$ we say that $p \in D$ is a **critical point** if either f is not differentiable at p or if

$$\nabla f(p) = 0$$

Remark 1.3. If p is a local extremum of f, then p is a critical point of f.

Definition 1.4. If $\nabla f(p) = 0$, but p is not a local extremum of f, then p is a saddle point.

1.2. Second order necessary conditions.

Proposition 1.5. Let $f: D \to \mathbb{R}$ be of class $C^2(D)$. Fix a point $p \in D$.

- (1) If p is a local maximum of f on D, then the Hessian matrix H f(p) is negative semidefinite or negative definite.
- (2) If p is a local minimum of f on D, then the Hessian matrix H f(p) is positive semidefinite or positive definite.

1.3. Second order sufficient condition.

Proposition 1.6. Let $f: D \to \mathbb{R}$ be of class $C^2(D)$. Fix a point $p \in D$ and suppose

$$\nabla f(p) = 0$$

We have,

- (1) If H f(p) is negative definitive, then p is a (strict) local maximum of f.
- (2) If H f(p) is positive definitive, then p is a (strict) local minimum of f.
- (3) If H f(p) is indefinite, then p is a saddle point.

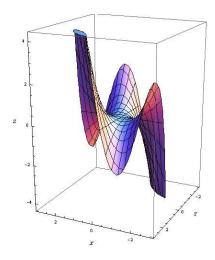
Example 1.7. Consider the function,

$$f(x,y) = x^2y + y^2x$$

Then, $\nabla f(x,y) = (2xy + y^2, 2xy + x^2)$ so the only critical point is (0,0). To determine if it is a maximum, minimum or a saddle point, we compute the Hessian matrix,

$$\left. \operatorname{H} f(0,0) = \begin{pmatrix} 2y & 2x+2y \\ 2x+2y & 2x \end{pmatrix} \right|_{x=y=0} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

We see that the second order conditions are not informative. But, note that $f(x,x) = 2x^3$. So, (0,0) is a saddle point. The graph of f is the following one



Example 1.8. Consider the function,

$$f(x,y) = (x-1)^4 + (y-1)^2$$

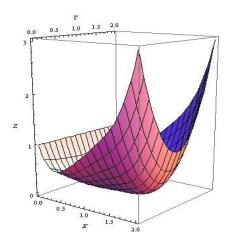
Then.

$$\nabla f(x,y) = (4(x-1)^3, 2(y-1))$$

so the only critical point is (1,1). To determine if it is a maximum, minimum or a saddle point, we compute the Hessian matrix,

$$\operatorname{H} f(1,1) = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$$

Since, it is positive semidefinite, the second order conditions are not informative. But, $f(x,y) \ge 0 = f(1,1)$. Hence, (1,1) is a global minimum. The graph of f is the following one



Example 1.9. Consider the function,

$$f(x,y) = (x-1)^3 + y^2$$

The gradient is

$$\nabla f(x,y) = (3(x-1)^2, 2y)$$

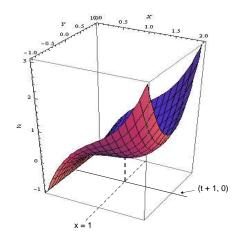
and there is a unique critical point (1,0). To classify it, we compute the Hessian matrix

$$H f(1,0) = \begin{pmatrix} 6(x-1), & 0 \\ 0 & 2 \end{pmatrix} \Big|_{x=1y=0} = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$$

Since, it is positive semidefinite, the second order conditions are not informative. But,

$$f(1+t,0) = t^3 = \begin{cases} > 0 \text{ if } t > 0 \\ < 0 \text{ if } t < 0 \end{cases}$$

So, (1,0) is a saddle point. The graph of f is the following one



Example 1.10. Consider the function,

$$f(x,y) = x^2 + y^2(x+1)^3$$

The gradient is

$$\nabla f(x,y) = (2x + 3y^2(x+1)^2, 2y(x+1)^3)$$

and there is unique critical point, (0,0). To classify it we compute the Hessian matrix,

$$H f(0,0) = \begin{pmatrix} 2 + 6y^2(x+1) & 6y(x+1)^2 \\ 6y(x+1)^2 & 2(x+1)^3 \end{pmatrix} \Big|_{x=y=0} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

which is positive definite. Hence, (0,0) is a strict local minimum. But it is not a global minimum, because, $f(-2,y) = 4 - y^2$ can be made arbitrarily small, by taking y very large.

Remark 1.11 (A justification of the second order conditions). Recall that Taylor's polynomial of order 2 of f at the point p is

$$P_2(x) = f(p) + \nabla f(p) \cdot (x - p) + \frac{1}{2}(x - p) \operatorname{H} f(p)(x - p)$$

Recall also that if f is of class C^2 then

$$\lim_{x \to 0} \frac{R_2(x)}{\|x - p\|^2} = 0$$

where

$$R_2(x) = f(x) - P_2(x)$$

is the error produced when we approximate the function f by Taylor's polynomial of order 2. Suppose now p is a critical point of f and, hence $\nabla f(p) = 0$. Then,

$$f(x) - f(p) = \frac{1}{2}(x-p) \operatorname{H} f(p)(x-p) + R_2(x)$$

and for x near p the term $R_2(x)$ is 'negligible'. Therefore if, for example we know that the term

$$(x-p) H f(p)(x-p) > 0$$

then f(x) - f(p) > 0 for every $x \neq p$ 'sufficiently close' to p and the point p would be a local minimum. But, the condition $(x - p) \operatorname{H} f(p)(x - p) > 0$ for every $x \neq p$ is satisfied if H is positive definite.

2. Optimization with equality constrains: Lagrange's method

In this section, we consider problems of the following form,

(2.1)
$$\max \quad (\text{resp. min}) \quad f(x)$$

$$\text{s.a.} \quad g_1(x) = 0$$

$$g_2(x) = 0$$

$$\vdots$$

$$g_m(x) = 0$$

Definition 2.1. A point $p \in \mathbb{R}^n$ is a solution to problem 2.1 if

(1) It satisfies all the constraints,

$$g_1(p) = g_2(p) = \dots = g_m(p) = 0$$

and

(2) $f(p) \ge f(x)$ (resp. $f(p) \le f(x)$) for any other point $x \in \mathbb{R}^n$ which also satisfies the constraints $g_1(x) = g_2(x) = \cdots = g_m(x) = 0$.

Remark 2.2 (non-degenerate constraint qualification). In order to apply the methods that we are going to study to solve problem (P), one has to check that the following non-degenerate constraint qualification holds. Let

$$(2.2) M = \{x \in \mathbb{R}^n : g_1(x) = g_2(x) = \dots = g_m(x) = 0\}$$

be the feasible set for problem (P). Let us define the function $g: \mathbb{R}^n \to \mathbb{R}^m$ such that

$$g(x) = (g_1(x), g_2(x), \cdots, g_m(x))$$

The non-degenerate constraint qualification is the following:

(2.3)
$$\operatorname{rank}(\operatorname{D} g(p)) = m$$
, at every point $p \in M$.

Intuitively, the non-degenerate constraint qualification means that the set M is a higher dimensional 'surface' in \mathbb{R}^n of dimension n-m and at each point $p \in M$ we can compute the tangent plane T_pM to M as follows

$$(2.4) p + \{v \in \mathbb{R}^n : D g(p)v = 0\} = \{p + v : v \in \mathbb{R}^n, D g(p)v = 0\}$$

2.1. First order conditions.

Proposition 2.3 (Lagrange's method). Consider problem 2.1. And suppose that the functions $f, g_1, \ldots g_m$ are of class C^1 and that the non-degenerate constraint qualification 2.3 holds. If p is a solution to problem 2.1, then there are $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$ such that

$$\nabla L(p) = 0$$

where

$$L(x) = f(x) + \lambda_1 g_1(x) + \dots, \lambda_m g_m(x)$$

is called the Lagrangian function associated to the problem 2.1.

The equations,

$$\nabla L(x) = 0$$

$$g_1(x) = 0$$

$$\vdots$$

$$g_m(x) = 0$$

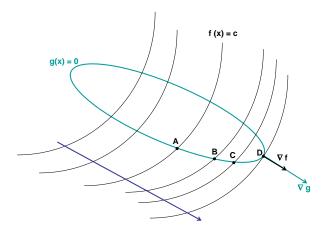
are the **Lagrange equations**. There are n+m equations and n+m unknowns (the *n* coordinates of *p* and the Lagrange multipliers, $\lambda_1 \ldots, \lambda_m$)

Remark 2.4 (Why should the Lagrange equations hold?). To make things simple, let us assume that there is only one restriction and the problem is the following

$$\max = f(x)$$

s.a.
$$g(x) = 0$$

In the figure we have represented the set $\{x: g(x) = 0\}$ and the level surfaces (curves) f(x) = c. The arrow points in the direction in which the function f grows (at each point is given by the gradient of f).



We see that, for example, A cannot be a maximum of f in the set $\{x:g(x)=0\}$, since f attains a higher value at the point B, that is f(B)>f(A). Likewise, we see graphically that f(C)>f(B). The point D is exactly the point at which if we keep moving in the direction of $\nabla f(D)$ we can no longer satisfy the restriction g(x)=0. At D, the level curves f(x)=c and g(x)=0 are tangent. Equivalently, $\nabla f(D)$ and $\nabla g(D)$ are parallel, so one is a multiple of the other. That is, $\nabla f(D)=\lambda \nabla g(D)$ for some $\lambda \in \mathbb{R}$.

Example 2.5 (Utility Maximization with a budget constraint). Consider the problem

$$\left. \begin{array}{ll}
 \text{max} & u(x) \\
 \text{s.t.} & p \cdot x = t
 \end{array} \right\}$$

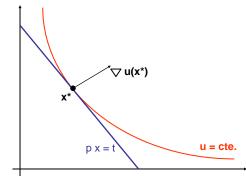
Here we interpret $x \in \mathbb{R}^n_+$ as a consumption bundle and $p \in \mathbb{R}^n_{++}$ as the prices of the goods. The agent has an income t and chooses a consumption bundle x such that it maximizes his utility, subject to the budget constraint, $p \cdot x = t$. The Lagrangian function is

$$L = u(x) + \lambda(t - px)$$

and the Lagrange equations are

(2.5)
$$\begin{array}{c} \nabla u = \lambda p \\ px = t \end{array}$$

Thus, if x^* is the bundle that solves the above problem, we have that $\nabla u(x^*)$ is perpendicular to plane $p \cdot x = t$.



On the other hand, we see that equations 2.5 are equivalent to

$$MRS_{ij}(x) = \frac{p_i}{p_j}$$

$$px = t$$

where

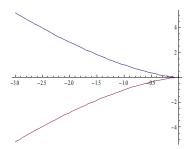
$$MRS_{ij} = \frac{\partial u / \partial x_i}{\partial u / \partial x_j}$$

is the marginal rate of substitution between good i and good j.

Example 2.6 (The non-degenerate constraint qualification). This is an example that shows that if the non-degenerate constraint qualification 2.3 does not hold, then the Lagrange equations might not determine the optimum. Consider the problem

$$\begin{aligned}
\text{max} &= x \\
\text{s.a.} & x^3 + y^2 = 0
\end{aligned}$$

The set $\{(x,y) \in \mathbb{R}^2 : x^3 + y^2 = 0\}$ is represented in the following figure



Clearly, the solution is x = 0. But, if we write the Lagrangian

$$L = x + \lambda(x^3 + y^2)$$

the Lagrange equations are

$$1 - 3\lambda x^2 = 0$$
$$-2\lambda y = 0$$
$$x^3 + y^2 = 0$$

The first equation implies that $x \neq 0$ (why?). Using now the third equation we obtain that $y = \sqrt{-x^3} \neq 0$. Since $y \neq 0$ the second equation implies that $\lambda = 0$. But if we plug in $\lambda = 0$ we obtain a contradiction. Therefore the system of the Lagrange equations does not have a solution.

What is wrong? The Jacobian of g is

$$D g(x,y) = (3x^2, 2y)$$

The point (0,0) satisfies the restriction of the problem, but

$$rank (D g(0,0)) = rank (0,0) = 0$$

so that the non-degenerate constraint qualification does not hold.

2.2. **Second order conditions.** Recall the definition of feasible set 2.2 for the optimization problem 2.1

$$M = \{x \in \mathbb{R}^n : g_1(x) = g_2(x) = \dots = g_m(x) = 0\}$$

and recall the definition of the tangent space 2.4 to M at a point $p \in M$,

$$T_p M = p + \{ v \in \mathbb{R}^n : D g(p)v = 0 \}$$

Note that a vector v belongs to the set $\{v \in \mathbb{R}^n : \mathrm{D}\,g(p)v = 0\}$ if and only if v satisfies the following equations

(2.6)
$$\nabla g_1(p) \cdot v = \nabla g_2(p) \cdot v = \dots = \nabla g_m(p) \cdot v = 0$$

The second order conditions for the optimization problem 2.1 can be expressed using the associated Lagrange function and the above equations.

Proposition 2.7 (Second order conditions sufficient conditions). Suppose the functions $f, g_1, \ldots g_m$ are of class C^2 and that the non-degenerate constraint qualification 2.3 holds. Suppose we have found a set of Lagrange multipliers $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$ and a point $p \in \mathbb{R}^n$ such that if

$$L(x) = f(x) + \lambda_1 g_1(x) + \dots \lambda_m g_m(x)$$

is the Lagrange function associated to problem 2.1, we have that

- the point p verifies the restrictions $g_1(p) = g_2(p) = \cdots = g_m(p) = 0$,
- the point p verifies the Lagrange equations, $\nabla L(p) = 0$.

The following hold,

- (1) If $v \cdot \operatorname{H} L(p)v < 0$ for every vector $v \neq 0$ which verifies the equations 2.6, then p is a (strict) local maximum of f.
- (2) If $v \cdot HL(p)v > 0$ for every vector $v \neq 0$ which verifies the equations 2.6, then p is a (strict) local minimum of f.

Example 2.8. Let us solve the problem

$$\max xy$$
s.a. $p_1x + p_2y = m$

with $m, p_1, p_2 \neq 0$.

Let f(x,y) = xy, $g(x,y) = m - p_1x - p_2y$. Then, $\nabla g(x,y) = (y,x)$ which does not vanish on the set $M = \{(x,y) \in \mathbb{R}^2 : p_1x + p_2y = m\}$. Therefore, The regularity condition holds. Let us consider the Lagrangian function

$$L(x) = xy + \lambda(m - p_1x - p_2y).$$

The Lagrange equations are

$$y - \lambda p_1 = 0$$

$$x - \lambda p_2 = 0$$

$$p_1 x + p_2 y = m.$$

The solution of this system is

$$x = \frac{m}{2p_1}, \qquad y = \frac{m}{2p_2} \qquad \lambda = \frac{m}{2p_1p_2}$$

The Hessian matrix of L at the point

$$(x^*, y^*) = \left(\frac{m}{2p_1}, \frac{m}{2p_2}; \frac{m}{2p_1p_2}\right)$$

is

$$\mathbf{H}\,L = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

which is non-definite. On the other hand,

$$T_{(x^*,y^*)}M = \{v \in \mathbb{R}^2 : \nabla g\left(\frac{m}{2p_1}, \frac{m}{2p_2}\right) \cdot v = 0\}$$

$$= \{(v_1, v_2) \in \mathbb{R}^2 : (p_1, p_2) \cdot (v_1, v_2) = 0\}$$

$$= \{(t, -\frac{p_1}{p_2}t) \in \mathbb{R}^2 : t \in \mathbb{R}\}$$

Therefore,

$$(t, -\frac{p_1}{p_2}t) \cdot \operatorname{H} L(x^*, y^*) \begin{pmatrix} t \\ -\frac{p_1}{p_2}t \end{pmatrix} = (t, -\frac{p_1}{p_2}t) \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} t \\ -\frac{p_1}{p_2}t \end{pmatrix} = -\frac{p_1}{p_2}t^2 < 0$$

if $t \neq 0$. Hence,

$$\left(\frac{m}{2p_1}, \frac{m}{2p_2}\right)$$

is a maximum.

Example 2.9. Let us solve the problem

$$\begin{array}{ll}
\max & x^2 + y^2 \\
\text{s.a.} & xy = 4
\end{array}$$

Let $f(x,y)=x^2+y^2$, g(x,y)=xy. Then $\nabla g(x,y)=2(y,x)$ which does not vanish on the set $M=\{(x,y)\in\mathbb{R}^2\colon xy=4\}$. Therefore, The regularity condition holds. Let us consider the Lagrangian function

$$L(x) = x^2 + y^2 + \lambda xy.$$

The Lagrange equations are

$$2x + \lambda y = 0$$
$$2y + \lambda x = 0$$
$$xy = 4.$$

The above system has two solutions

$$x = y = 2, \lambda = -2$$

$$x = y = -2, \lambda = -2.$$

The Hessian matrix of L at the point (2,2;-2) is

$$HL_{(2,2)} = \begin{pmatrix} 2 & \lambda \\ \lambda & 2 \end{pmatrix} \Big|_{\lambda=2} = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$$

On the other hand,

$$T_{(2,2)}M = \{v \in \mathbb{R}^2 : \nabla g(2,2) \cdot v = 0\}$$

= \{(v_1, v_2) \in \mathbb{R}^2 : (2,2) \cdot (v_1, v_2) = 0\}
= \{(t, -t) \in \mathbb{R}^2 : t \in \mathbb{R}\}

Hence,

$$(t,-t)\cdot \operatorname{H} L_{(2,2)}\begin{pmatrix} t \\ -t \end{pmatrix} = (t,-t)\cdot \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix} \begin{pmatrix} t \\ -t \end{pmatrix} = 8t^2$$

so that $\operatorname{H} L_{(2,2)}$ is positive definite on $T_{(2,2)}M$ and we conclude that (2,2) is un minimum.

Corollary 2.10. Suppose the functions $f, g_1, \ldots g_m$ are of class C^2 and that the non-degenerate constraint qualification 2.3 holds. Suppose we have found a set of Lagrange multipliers $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$ and a point $p \in \mathbb{R}^n$ such that if

$$L(x) = f(x) + \lambda_1 g_1(x) + \dots \lambda_m g_m(x)$$

is the Lagrange function associated to problem 2.1, we have that

- the point p verifies the restrictions $g_1(p) = g_2(p) = \cdots = g_m(p) = 0$,
- the point p verifies the Lagrange equations, $\nabla L(p) = 0$.

The following hold,

- (1) If HL(p) is negative definitive, then p is a (strict) local maximum of f.
- (2) If HL(p) is positive definitive, then p is a (strict) local minimum of f.
 - 3. Optimization with inequality constraints: The method of Kuhn-Tucker

We study next optimization problems with inequality constraints

(3.1)
$$\max f(x)$$

$$\text{s.t.} \quad g_1(x) \ge 0$$

$$g_2(x) \ge 0$$

$$\vdots$$

$$g_m(x) \ge 0$$

Definition 3.1. Given a point $p \in \mathbb{R}^n$ we say that the restriction k = 1, 2, ..., m is binding at the point p for problem 3.1 if $g_k(p) = 0$. If $g_k(p) > 0$ we say that the restriction k is not binding at the point p.

To the optimization problem 3.1 we associate the Lagrangian function

(3.2)
$$L(x) = f(x) + \lambda_1 g_1(x) + \dots + \lambda_m g_m(x)$$

Proposition 3.2 (Kuhn-Tucker's Method). Suppose that the functions $f, g_1, \ldots g_m$ are of class C^1 and that the non-degenerate constraint qualification 2.3 holds. If p is a solution of problem 3.1, then there are $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$ such that

- (1) $\nabla L(p) = 0$,
- $(2) \lambda_1 g_1(p) = 0, \cdots, \lambda_m g_m(p) = 0,$
- $(3) \ \lambda_1 \ge 0, \dots, \lambda_m \ge 0,$

where L(x) is the **Lagrangian** defined in 3.2.

Remark 3.3. The equations

- $(1) \nabla L(p) = 0,$
- (2) $\lambda_1 g_1(p) = 0, \dots, \lambda_m g_m(p) = 0,$
- $(3) \ \lambda_1 \geq 0, \dots, \lambda_m \geq 0,$
- (4) $g_1(p) \ge 0, \dots, g_m(p) \ge 0.$

are the Kuhn-Tucker equations of problem 3.1.

Example 3.4 (perfect substitutes). Suppose that an agent has income 5 and that his utility function over consumption bundles is u(x, y) = 2x + y. If the prices of the goods are $p_1 = 3$, $p_2 = 1$ what are the demand functions of the agent?

The maximization problem of the agent is

$$\begin{array}{ll} \max & 2x + y \\ \text{s.a.} & 3x + y \le 5 \\ & x \ge 0 \\ & y \ge 0 \end{array}$$

We write first this problem in the form 3.1

$$\begin{array}{ll} \max & 2x+y\\ \text{s.a.} & 5-3x-y\geq 0\\ & x\geq 0\\ & y\geq 0 \end{array}$$

The associated Lagrangian is

$$L(x,y) = 2x + y + \lambda_1(5 - 3x - y) + \lambda_2 x + \lambda_3 y$$

and the Kuhn-Tucker equations are

$$\frac{\partial L}{\partial x} = 2 - 3\lambda_1 + \lambda_2 = 0$$

$$\frac{\partial L}{\partial y} = 1 - \lambda_1 + \lambda_3 = 0$$

$$\lambda_1 (5 - 3x - y) = 0$$

$$\lambda_2 x = 0$$

$$\lambda_3 y = 0$$

$$3x + y \le 5$$

$$x \ge 0$$

$$y \ge 0$$

$$\lambda_1, \lambda_2, \lambda_3 \ge 0$$

Note that if $\lambda_1 = 0$ then the first equation implies that $\lambda_2 = -2 < 0$, which contradicts equation $\lambda_1, \lambda_2, \lambda_3 \ge 0$. Therefore, $\lambda_1 > 0$. From equation $\lambda_1(5 - 3x - y) = 0$ we conclude that 5 - 3x - y = 0 so that

$$y = 5 - 3x$$

Suppose that x > 0. In this case, the equation $\lambda_2 x = 0$ implies that $\lambda_2 = 0$. From the first equation we see that $\lambda_1 = 2/3$ and substituting in the equation we obtain that $\lambda_3 = \lambda_1 - 1 = -1/3 < 0$ which contradicts the equation $\lambda_1, \lambda_2, \lambda_3 \ge 0$.

We conclude that x = 0 and y = 5. Then,

$$x = 0, \quad y = 5, \quad \lambda_1 = \lambda_2 = 1, \quad \lambda_3 = 0$$

is the unique solution of the system.

Remark 3.5. The Kuhn-Tucker equations in Proposition 3.2 hold only when the problem is written in the form 3.1. If, for example, we are asked to find the minimum of a function or the restrictions are of the form \leq instead of \geq , then the problem can be easily transformed in the form 3.1. For example, finding the minimum of f(x) is the same as finding the maximum of -f(x); or, if the i-th restriction is $g_i(x) \leq a_i$, this is equivalent to the restriction $a_i - g_i(x) \geq 0$.

4. Economic interpretation of the lagrange multipliers

Consider the problem,

$$\max \quad f(x)$$
s.t. $g_1(x) = \alpha_1$

$$g_2(x) = \alpha_2$$

$$\vdots$$

$$g_m(x) = \alpha_m$$

Suppose that the solution, $x = x(\alpha_1, \ldots, \alpha_m)$, of the above problem is unique and it satisfies Lagrange's equation. That is, $x = x(\alpha_1, \ldots, \alpha_m)$, is a critical point of the lagrangian,

$$L(x) = f(x) + \lambda_1(\alpha_1 - g_1(x)) + \cdots + \lambda_m(\alpha_m - g_m(x))$$

The Lagrange multipliers, $\lambda_1, \ldots, \lambda_m$ also depend on the parameters $\alpha_1, \ldots, \alpha_m$, but we do not write this explicitly. Consider the value function

$$F(\alpha_1 \dots, \alpha_m) = f(x(\alpha_1 \dots \alpha_m))$$

Then, for each $i = 1, \ldots, n$,

$$\frac{\partial F}{\partial \alpha_i} = \lambda_i$$

Remark 4.1. Let us justify equation 4.1 for the case in which there is only one restriction

$$\max f(x)$$

s.a. $g(x) = \alpha$

Let λ be the Lagrange multiplier and let $x(\alpha)$ be the solution to the above problem. Then, the Lagrange equations are

$$\frac{\partial f}{\partial x_k} = \lambda \frac{\partial g}{\partial x_k} \qquad k = 1, \dots, n$$

On the one hand, since $x(\alpha)$ satisfies the equation

$$g(x(\alpha)) = \alpha$$

and differentiating this equation implicitly we obtain

$$\sum_{k=1}^{n} \frac{\partial g}{\partial x_k} (x(\alpha)) \frac{\partial x_k}{\partial \alpha} (\alpha) = 1$$

On the other hand, using the chain rule

$$\frac{\partial f\left(x(\alpha)\right)}{\partial \alpha} = \sum_{k=1}^{n} \frac{\partial f}{\partial x_{k}}\left(x(\alpha)\right) \frac{\partial x_{k}}{\partial \alpha}(\alpha) = \lambda \sum_{k=1}^{n} \frac{\partial g}{\partial x_{k}}\left(x(\alpha)\right) \frac{\partial x_{k}}{\partial \alpha}(\alpha) = \lambda$$

Remark 4.2. Equation 4.1 also holds for inequality constraints.

Example 4.3 (Indirect utility). Consider the problem,

$$\max \qquad u(x,y)$$
subject to:
$$p_1x + p_2y = m$$

In this problem a consumer chooses bundles of consumption (x, y) subject to the constraint that, given the prices (p_1, p_2) , this bundle costs $p_1x + p_2y = m$ and the income of the agent is m.

To solve this problem we consider the Lagrangian function,

$$L(x) = u(x) + \lambda(m - p_1x - p_2y)$$

Let $x(p_1, p_2, m), y(p_1, p_2, m)$ be the solution (assume it is unique). Let,

$$V(p_1, p_2, m) = u(x(p_1, p_2, m))$$

be the indirect utility. Then,

$$\frac{\partial V}{\partial m} = \lambda$$

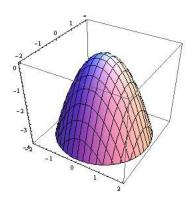
Thus, λ represents the marginal utility of income.

5. Optimization of convex (concave) functions

Let D be a convex subset of \mathbb{R}^n . Now we consider either of the following problems:

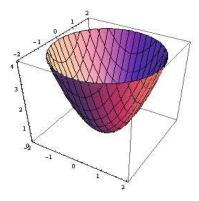
(1) The function $f: D \to \mathbb{R}$ is concave in D and we study the problem

$$\max_{x \in D} f(x)$$



(2) The function $f: D \to \mathbb{R}$ is convex in D and we study the problem

$$\min_{x \in D} f(x)$$



Proposition 5.1. Let D be a convex subset of \mathbb{R}^n . Let $f: D \to \mathbb{R}$.

- (1) if f is concave and p is a local maximum of f on D, then p is a global maximum of f on D.
- (2) if f is convex, and $p \in D$ is a local minimum of f on D, then p is a global minimum of f on D.

Proposition 5.2. Let $D \subset \mathbb{R}^n$ be convex, $p \in D$ and $f \in C^1(D)$.

- (1) If f is concave on D then, p is a global maximum of f on D if and only if $\nabla f(p) = 0$.
- (2) If f is convex on D then, p is a global minimum of f on D if and only if $\nabla f(p) = 0$.

Proof In either case, if f has a maximum at p then, $\nabla f(p) = 0$. If, for example, f is concave then, for each $x \in D$ we have that

$$f(x) \le f(p) + \nabla f(p)(x - p) = f(p)$$

Hence, if $\nabla f(p) = 0$, we have that $f(x) \leq f(p)$ for other $x \in D$.

Remark 5.3. If a function is strictly concave (resp. convex)then,

$$f(x) < f(p) + \nabla f(p)(x - p) = f(p)$$

and we see that if it has a maximum (resp. minimum) point, then it is unique. This can be proved directly from the definition, without using the first order conditions.