UNIVERSITY CARLOS III

Master in Economics

Master in Industrial Economics and Markets

Game Theory

MIDTERM EXAM-November 2nd, 2023

Total time: 90 minutes. This is an open book exam. Calculators are allowed.

Exercise 1: Assume that two firms, 1 and 2, produce heterogeneous products and the quantities demanded by the market, when these firms fix prices p_1 and p_2 , are, respectively:

$$x_1(p_1, p_2) = 100 - p_1 + \frac{p_2}{2}$$

 $x_2(p_1, p_2) = 100 - p_2 + \frac{p_1}{3}$

These demand functions describe a situation in which products are not perfectly homogenous. Suppose that both firms have constant marginal cost 38 and set prices simultaneously.

(a) (10 points) Write the profit functions $\pi_1(p_1, p_2)$ and $\pi_2(p_1, p_2)$.

Solution: The profits are

$$\Pi_1(p_1, p_2) = x_1(p_1 - c) = \left(100 - p_1 + \frac{p_2}{2}\right)(p_1 - 38) = 138p_1 - p_1^2 + \frac{p_2p_1}{2} - 19p_2 - 3800$$

$$\Pi_2(p_1, p_2) = x_2(p_2 - c) = \left(100 - p_2 + \frac{p_1}{3}\right)(p_2 - 38) = 138p_2 - p_2^2 + \frac{p_1p_2}{3} + \frac{38p_1}{3} - 3800$$

(b) (10 points) Compute the best reply functions $BR_1(p_2)$ and $BR_2(p_1)$ of the firms.

Solution: The first order conditions are

$$0 = -2p_1 + \frac{p_2}{2} + 138$$
$$0 = \frac{p_1}{3} - 2p_2 + 138$$

Hence,

$$BR_1(p_2) = \frac{1}{4}(p_2 + 276) = \frac{p_2}{4} + 69$$

$$BR_2(p_1) = \frac{1}{6}(p_1 + 414) = \frac{p_1}{6} + 69$$

Note that the second order conditions

$$\frac{\partial^2\Pi_1}{\partial p_1\partial p_1}=\frac{\partial^2\Pi_2}{\partial p_2\partial p_2}=-2$$

are fullfilled.

(c) (10 points) Find the Nash equilibrium (p_1^*, p_2^*) and the equilibrium profits, $\pi_1(p_1^*, p_2^*)$ and $\pi_2(p_1^*, p_2^*)$. Solution:

The prices $p_1 = 0$ and $p_2 = 0$ give 0 profits. Hence, The NE is the solution of the system of equations

$$p_1 = \frac{1}{4} (p_2 + 276)$$

$$p_2 = \frac{1}{6} (p_1 + 414)$$

The solution is $p_1^* = 90$, $p_2^* = 84$. The profits are $\pi_1(90, 84) = 2704$ and $\pi_2(90, 84) = 2116$.

(d) (10 points) Suppose now that firm 2 can launch an advertising campaign such that its new demand function is

$$x_2(p_1, p_2) = 100 - p_2 + \frac{p_1}{2}$$

How much would firm 2 be willing to pay for such an advertising campaign?

Suggestion: Note that $x_2(p_1, p_2)$ is now symmetric with respect firm 1. This simplifies greatly the computations.

Solution: By symmetry the best reply of firm 2 is

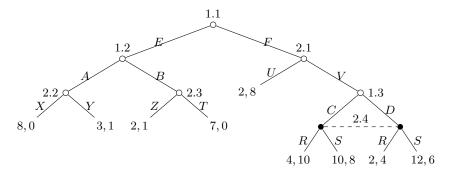
$$BR_1(p_1) = \frac{1}{4} (p_1 + 276)$$

The equilibrium is symmetric $p = p_1 = p_2$,

$$p = \frac{1}{4} \left(p + 276 \right)$$

We obtain $\bar{p}_1 = \bar{p}_2 = 92$. The profits are $\pi_1(92,92) = \pi_2(92,92) = 2916$. Firm 2 is willing to pay up to 2916 - 2116 = 800 for the advertising campaign.

Exercise 2: Consider the following dynamic form game.



(a) **(20 points)** Write the normal form of the game that starts at node 1.3 and find all (that is, in pure and mixed strategies) NE of this game.

Solution: The normal form game is

$$\begin{array}{c|cc} R & S \\ C & 4,10 & 10,8 \\ D & 2,4 & 12,6 \end{array}$$

We see that there are two NE in pure strategies: (C,R) with payoffs $u_1 = 4$, $u_2 = 10$ and (D,S) with payoffs $u_1 = 12$, $u_2 = 6$.

Now we look for NE in mixed strategies of the form

$$\sigma_1 = pC + (1-p)D$$

$$\sigma_2 = qR + (1-q)S$$

The expected payoffs of player 1 are

$$u_1(C, \sigma_2) = 10 - 6q$$

 $u_1(D, \sigma_2) = 12 - 10q$

Equating 10-6q=12-10q, we obtain $q=\frac{1}{2}$, $u_1(C,\sigma_2)=u_1(D,\sigma_2)=7$. The expected payoffs of player 2 are

$$u_2(\sigma_1, R) = 4 + 6p$$

$$u_2(\sigma_2, S) = 6 + 2p$$

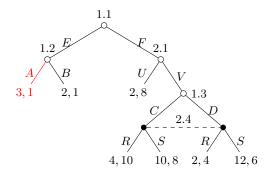
Equating 4 + 6p = 6 + 2p, we obtain $p = \frac{1}{2}$, $u_2(\sigma_1, R) = u_2(\sigma_2, S) = 7$.

Thus, the NE of this game are:

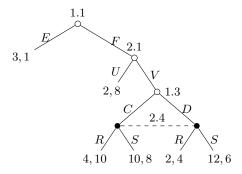
- (a) (C,R) with payoffs $u_1 = 4$, $u_2 = 10$;
- (b) (D,S) with payoffs $u_1 = 12$, $u_2 = 6$; and
- (c) $(\frac{1}{2}C + \frac{1}{2}D, \frac{1}{2}R + \frac{1}{2}S)$, with payoffs $u_1 = 7$, $u_2 = 7$.
- (b) (20 points) Find the subgame perfect Nash equilibria of the complete game. Compute the utilities attained by the players in each SPNE.

Solution: We use the notation

At node 2.2, player 2 chooses Y. The payoffs of the sub-game starting at node 2.2 are $u_1 = 3$, $u_2 = 1$. At node 2.3, player 2 chooses Z. The payoffs of the sub-game starting at node 2.2 are $u_1 = 2$, $u_2 = 1$.

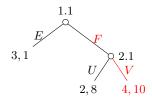


At node 1.2, player 1 chooses A.



All the SPNE are of the form

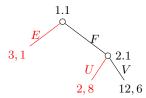
(a) Let us look for a SPNE in which at node 1.3 the NE (C, R) is played.



At node 2.1 player 2 chooses V. At node 1.1 player 1 chooses F. We have the SPNE

with payoffs $u_1 = 4$, $u_2 = 10$.

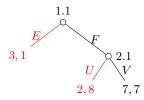
(b) Let us look for a SPNE in which at node 1.3 the NE (D, S) is played.



At node 2.1 player 2 chooses U. At node 1.1 player 1 chooses E. We have the SPNE

with payoffs $u_1 = 3$, $u_2 = 1$.

(c) Let us look for a SPNE in which at node 1.3 the NE $(\frac{1}{2}C + \frac{1}{2}D, \frac{1}{2}R + \frac{1}{2}S)$ is played.



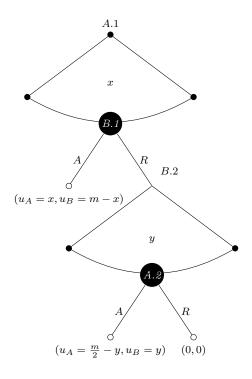
At node 2.1 player 2 chooses U. At node 1.1 player 1 chooses E. We have the SPNE

$$\left(E;\left(A,\left(Y,Z\right)\right);\left(\frac{1}{2}C+\frac{1}{2}D,\frac{1}{2}R+\frac{1}{2}S\right)\right)$$

with payoffs $u_1 = 3$, $u_2 = 1$.

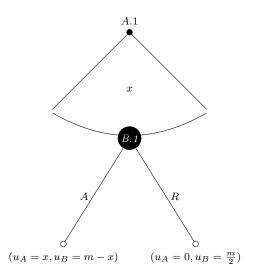
Exercise 3: Two agents engage in a sequential bargaining process as follows:

- 1. In stage 1, agent A proposes $0 \le x \le m$, with m > 0.
 - (a) If agent B accepts, agent A gets x, agent B gets m-x.
 - (b) If agent B refuses, they go into the stage 2.
- 2. In stage 2, agent B proposes $0 \le y \le \frac{m}{2}$.
 - (a) If agent A accepts, agent A gets $\frac{m}{2} y$, agent B gets y.
 - (b) If agent A refuses, agent A gets the amount 0 and agent B gets the amount 0.
- (a) **(5 points)** Describe the situation as an extensive form game. Draw the tree that represents the game. **Solution:**



(b) (10 points) Compute the subgame perfect Nash equilibria of this game. Write the strategies of the players at each node. Write the payoffs of the players in each of the SPNE.

Solution: At node A.2, agent A accepts iff $\frac{m}{2} - y \ge c$. That is agent A accepts iff $y \le \frac{m}{2}$. Given the best reply of agent A at node A.2, the best response of agent B at node B.2 is to offer $y = \frac{m}{2}$. Thus, we may assume that if we ever reach node B.2, agent B will offer $y = \frac{m}{2}$ and agent A accepts. The payoffs will be $u_A = 0$, $u_B = \frac{m}{2} > 0$. We replace this payoffs at node A.2



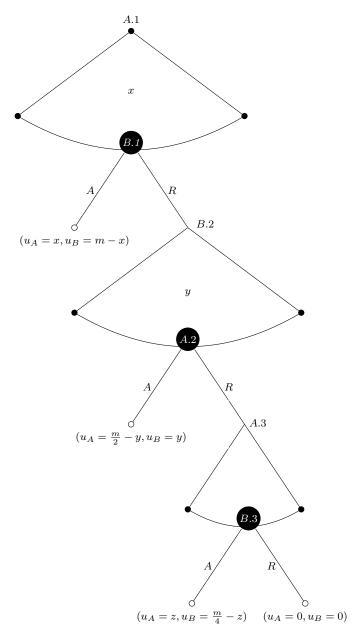
Now, player B at node B.1 accepts iff $m-x\geq \frac{m}{2}$. That, is at node B.1 player B accepts iff $x\leq \frac{m}{2}$. The best response now for player A is to offer $x=\frac{m}{2}$ at node A.1. The SPNE is the following.

- Node A.1: $x = \frac{m}{2}$.
- Node B.1: accept iff $x \leq \frac{m}{2}$.
- Node B.2: $y = \frac{m}{2}$.

• Node A.2: accept iff $y \leq \frac{m}{2}$.

The payoffs are $u_A = \frac{m}{2}$, $u_B = \frac{m}{2}$.

- (c) Imagine now that, if, in the second stage agent A refuses, they go into a third stage:
 - 3. In stage 3, agent A proposes $0 \le z \le \frac{m}{4}$. If agent B accepts, agent A gets z, agent B gets $\frac{m}{4} z$. If agent B refuses, agent A gets the amount 0 and agent B gets the amount 0.
 - (a) **(5 points)** Describe the new dynamic game **Solution:**



(b) (10 points) Compute the SPNE. Write the strategies of the players at each node. Compute the payoffs in the SPNE.

Solution: The SPNE is the following.

• Node A.1: $x = \frac{3m}{4}$.

- Node B.1: accept iff $x = \leq \frac{3m}{4}$. Node B.2: $y = \frac{m}{4}$.
- Node A.2: accept iff $y \leq \frac{m}{4}$.
- Node A.3: $z = \frac{m}{4}$. Node B.3: accept iff $z \leq \frac{m}{4}$.

The payoffs are $u_A = \frac{3m}{4}$, $u_B = \frac{m}{4}$.

(c) (10 points) Who prefers the 2-stage bargaining procedure versus the 3-stage bargaining procedure? Solution:

 $Agent\ A\ prefers\ the\ three-stage\ game\ and\ agent\ B\ prefers\ the\ two-stage\ game.$